151 research outputs found

    Variability in bioreactivity linked to changes in size and zeta potential of diesel exhaust particles in human immune cells

    Get PDF
    Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO(2)) nanoparticles have been used in Europe as diesel fuel additives (Envirox™). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO(2) (DEP-Env) on innate immune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Env were obtained on three separate occasions using identical collection and extraction protocols with the aim of determining the reproducibility of particles generated at different times. However, we observed significant differences in size and surface charge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells and PBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differences in bioreactivity as determined by IL-1β, TNF-α, IL-6, IFN-γ, and IL-12p40 mRNA (by qRT-PCR) and protein expression (by ELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (−37 to −41 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of the bioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expected bioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batch-to-batch variations in physical (and possibly chemical) properties

    PAH–DNA Adducts, Cigarette Smoking, GST Polymorphisms, and Breast Cancer Risk

    Get PDF
    BackgroundPolycyclic aromatic hydrocarbons (PAHs) may increase breast cancer risk, and the association may be modified by inherited differences in deactivation of PAH intermediates by glutathione S-transferases (GSTs). Few breast cancer studies have investigated the joint effects of multiple GSTs and a PAH biomarker.ObjectiveWe estimated the breast cancer risk associated with multiple polymorphisms in the GST gene (GSTA1, GSTM1, GSTP1, and GSTT1) and the interaction with PAH–DNA adducts and cigarette smoking.MethodsWe conducted unconditional logistic regression using data from a population-based sample of women (cases/controls, respectively): GST polymorphisms were genotyped using polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight assays (n = 926 of 916), PAH–DNA adduct blood levels were measured by competitive enzyme-linked immunosorbent assay (n = 873 of 941), and smoking status was assessed by in-person questionnaires (n = 943 of 973).ResultsOdds ratios for joint effects on breast cancer risk among women with at least three variant alleles were 1.56 [95% confidence interval (CI), 1.13–2.16] for detectable PAH–DNA adducts and 0.93 (95% CI, 0.56–1.56) for no detectable adducts; corresponding odds ratios for three or more variants were 1.18 (95% CI, 0.82–1.69) for ever smokers and 1.44 (95% CI, 0.97–2.14) for never smokers. Neither interaction was statistically significant (p = 0.43 and 0.62, respectively).ConclusionWe found little statistical evidence that PAHs interacted with GSTT1, GSTM1, GSTP1, and GSTA1 polymorphisms to further increase breast cancer risk

    Associations between Polycyclic Aromatic Hydrocarbon–Related Exposures and p53 Mutations in Breast Tumors

    Get PDF
    Background: Previous studies have suggested that polycyclic aromatic hydrocarbons (PAHs) may be associated with breast cancer. However, the carcinogenicity of PAHs on the human breast remains unclear. Certain carcinogens may be associated with specific mutation patterns in the p53 tumor suppressor gene, thereby contributing information about disease etiology. Objectives: We hypothesized that associations of PAH-related exposures with breast cancer would differ according to tumor p53 mutation status, effect, type, and number. Methods: We examined this possibility in a population-based case–control study using polytomous logistic regression. As previously reported, 151 p53 mutations among 859 tumors were identified using Surveyor nuclease and confirmed by sequencing. Results: We found that participants with p53 mutations were less likely to be exposed to PAHs (assessed by smoking status in 859 cases and 1,556 controls, grilled/smoked meat intake in 822 cases and 1,475 controls, and PAH–DNA adducts in peripheral mononuclear cells in 487 cases and 941 controls) than participants without p53 mutations. For example, active and passive smoking was associated with p53 mutation–negative [odds ratio (OR) = 1.55; 95% confidence interval (CI), 1.11–2.15] but not p53 mutation–positive (OR = 0.77; 95% CI, 0.43–1.38) cancer (ratio of the ORs = 0.50, p < 0.05). However, frameshift mutations, mutation number, G:C→A:T transitions at CpG sites, and insertions/deletions were consistently elevated among exposed subjects. Conclusions: These findings suggest that PAHs may be associated with specific breast tumor p53 mutation subgroups rather than with overall p53 mutations and may also be related to breast cancer through mechanisms other than p53 mutation

    Toxic ignorance and right-to-know in biomonitoring results communication: a survey of scientists and study participants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure assessment has shifted from pollutant monitoring in air, soil, and water toward personal exposure measurements and biomonitoring. This trend along with the paucity of health effect data for many of the pollutants studied raise ethical and scientific challenges for reporting results to study participants.</p> <p>Methods</p> <p>We interviewed 26 individuals involved in biomonitoring studies, including academic scientists, scientists from environmental advocacy organizations, IRB officials, and study participants; observed meetings where stakeholders discussed these issues; and reviewed the relevant literature to assess emerging ethical, scientific, and policy debates about personal exposure assessment and biomonitoring, including public demand for information on the human health effects of chemical body burdens.</p> <p>Results</p> <p>We identify three frameworks for report-back in personal exposure studies: clinical ethics; community-based participatory research; and citizen science 'data judo.' The first approach emphasizes reporting results only when the health significance of exposures is known, while the latter two represent new communication strategies where study participants play a role in interpreting, disseminating, and leveraging results to promote community health. We identify five critical areas to consider in planning future biomonitoring studies.</p> <p>Conclusion</p> <p>Public deliberation about communication in personal exposure assessment research suggests that new forms of community-based research ethics and participatory scientific practice are emerging.</p
    • …
    corecore