61 research outputs found

    Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis.

    Get PDF
    Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA

    Discordant American College of Physicians and international rheumatology guidelines for gout management: consensus statement of the Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN).

    Get PDF
    In November 2016, the American College of Physicians (ACP) published a clinical practice guideline on the management of acute and recurrent gout. This guideline differs substantially from the latest guidelines generated by the American College of Rheumatology (ACR), European League Against Rheumatism (EULAR) and 3e (Evidence, Expertise, Exchange) Initiative, despite reviewing largely the same body of evidence. The Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN) convened an expert panel to review the methodology and conclusions of these four sets of guidelines and examine possible reasons for discordance between them. The G-CAN position, presented here, is that the fundamental pathophysiological knowledge underlying gout care, and evidence from clinical experience and clinical trials, supports a treat-to-target approach for gout aimed at lowering serum urate levels to below the saturation threshold at which monosodium urate crystals form. This practice, which is truly evidence-based and promotes the steady reduction in tissue urate crystal deposits, is promoted by the ACR, EULAR and 3e Initiative recommendations. By contrast, the ACP does not provide a clear recommendation for urate-lowering therapy (ULT) for patients with frequent, recurrent flares or those with tophi, nor does it recommend monitoring serum urate levels of patients prescribed ULT. Results from emerging clinical trials that have gout symptoms as the primary end point are expected to resolve this debate for all clinicians in the near term future

    Acromegaly

    Get PDF
    Acromegaly is an acquired disorder related to excessive production of growth hormone (GH) and characterized by progressive somatic disfigurement (mainly involving the face and extremities) and systemic manifestations. The prevalence is estimated at 1:140,000–250,000. It is most often diagnosed in middle-aged adults (average age 40 years, men and women equally affected). Due to insidious onset and slow progression, acromegaly is often diagnosed four to more than ten years after its onset. The main clinical features are broadened extremities (hands and feet), widened thickened and stubby fingers, and thickened soft tissue. The facial aspect is characteristic and includes a widened and thickened nose, prominent cheekbones, forehead bulges, thick lips and marked facial lines. The forehead and overlying skin is thickened, sometimes leading to frontal bossing. There is a tendency towards mandibular overgrowth with prognathism, maxillary widening, tooth separation and jaw malocclusion. The disease also has rheumatologic, cardiovascular, respiratory and metabolic consequences which determine its prognosis. In the majority of cases, acromegaly is related to a pituitary adenoma, either purely GH-secreting (60%) or mixed. In very rare cases, acromegaly is due to ectopic secretion of growth-hormone-releasing hormone (GHRH) responsible for pituitary hyperplasia. The clinical diagnosis is confirmed biochemically by an increased serum GH concentration following an oral glucose tolerance test (OGTT) and by detection of increased levels of insulin-like growth factor-I (IGF-I). Assessment of tumor volume and extension is based on imaging studies. Echocardiography and sleep apnea testing are used to determine the clinical impact of acromegaly. Treatment is aimed at correcting (or preventing) tumor compression by excising the disease-causing lesion, and at reducing GH and IGF-I levels to normal values. Transsphenoidal surgery is often the first-line treatment. When surgery fails to correct GH/IGF-I hypersecretion, medical treatment with somatostatin analogs and/or radiotherapy can be used. The GH antagonist (pegvisomant) is used in patients that are resistant to somatostatin analogs. Adequate hormonal disease control is achieved in most cases, allowing a life expectancy similar to that of the general population. However, even if patients are cured or well-controlled, sequelae (joint pain, deformities and altered quality of life) often remain

    The Toll-Like Receptor 4 (TLR4) Variant rs2149356 and Risk of Gout in European and Polynesian Sample Sets

    Get PDF
    Deposition of crystallized monosodium urate (MSU) in joints as a result of hyperuricemia is a central risk factor for gout. However other factors must exist that control the progression from hyperuricaemia to gout. A previous genetic association study has implicated the toll-like receptor 4 (TLR4) which activates the NLRP3 inflammasome via the nuclear factor-κB signaling pathway upon stimulation by MSU crystals. The T-allele of single nucleotide polymorphism rs2149356 in TLR4 is a risk factor associated with gout in a Chinese study. Our aim was to replicate this observation in participants of European and New Zealand Polynesian (Māori and Pacific) ancestry. A total of 2250 clinically-ascertained prevalent gout cases and 13925 controls were used. Non-clinically-ascertained incident gout cases and controls from the Health Professional Follow-up (HPFS) and Nurses Health Studies (NHS) were also used. Genotypes were derived from genome-wide genotype data or directly obtained using Taqman. Logistic regression analysis was done including age, sex, diuretic exposure and ancestry as covariates as appropriate. The T-allele increased the risk of gout in the clinically-ascertained European samples (OR = 1.12, P = 0.012) and decreased the risk of gout in Polynesians (OR = 0.80, P = 0.011). There was no evidence for association in the HPFS or NHS sample sets. In conclusion TLR4 SNP rs2143956 associates with gout risk in prevalent clinically-ascertained gout in Europeans, in a direction consistent with previously published results in Han Chinese. However, with an opposite direction of association in Polynesians and no evidence for association in a non-clinically-ascertained incident gout cohort this variant should be analysed in other international gout genetic data sets to determine if there is genuine evidence for association

    Treatment of hyperuricemia, gout and other crystalline arthritidies

    No full text
    Gout is a very common joint disease which is due to chronic hyperuricemia and its related articular involvements. Yet it can be cured when appropriately managed. Comprehensive management of gout involves correct identification and addressing all causes of hyperuricemia, treating and preventing attacks of gouty inflammation (using colchicine NSAIDs, and/or steroids), and lowering serum urate (SUA) to an appropriate target level indefinitely. The ideal SUA target is, at a minimum, less than 6 mg/dL (60 mg/L or 360 μmol/L), or even less than 5 mg/dL in patients with tophi. The SUA target should remain at less than 6 mg/dL for long in all gout patients, especially until tophi have resolved. Patient education and adherence to therapy are key point to the optimal management of gout, aspects which are often neglected. Adherence can be monitored in part by continuing, regular assessment of the SUA level. More difficult cases of gout often need a combination of urate lowering therapy (ULT) for both refractory hyperuricemia and chronic tophaceous arthritis. Chronic tophaceous gouty arthropathy which do not respond adequately to optimized oral ULT might benefit from the use of pegloticase, when this is available in, for example, Italy and other European countries. By contrast, in calcium pyrophosphate (CPP) crystal deposition disease (CPPD), as evidenced by pseudo gout attacks or chronic polyarthritis, similar anti-inflammatory strategies have been recommended, but there have as yet been no controlled trials. Of note, there is no treatment for the underlying metabolic disorders able to control the CPPD. Management of crystal-induced arthropathies (CIA) depends not only on clinical expression, namely acute attacks or chronic arthropathy, but also on the underlying metabolic disorder. We will mainly focus on gout as an archetype of CIA

    Workshop report: 4th European crystal network meeting.

    Get PDF

    Analysis of a T-cell receptor V beta segment implicated in susceptibility to rheumatoid arthritis: V beta 2 germline polymorphism does not encode susceptibility.

    No full text
    OBJECTIVES--The assessment of allelic polymorphism of the T cell receptor gene segment, TCRBV2S1, in rheumatoid arthritis. METHODS--A total of 136 patients with rheumatoid arthritis (RA) (ACR criteria) and 150 controls were TCRBV2S1 genotyped using a nested PCR amplification strategy followed by single-strand conformation polymorphism (SSCP) analysis. RESULTS--The SSCP typing method detected two previously unknown alleles of the TCRBV2S1 gene segment. The TCRBV2S1 allele, genotype and inferred phenotype frequencies were similar in the RA patients and controls. No differences were apparent after the RA patients had been partitioned according to their HLA-DR genotypes. CONCLUSIONS--SSCP analysis is a rapid and efficient method of typing T cell receptor germline polymorphisms. Allelic polymorphism of the T cell receptor variable segment, TCRBV2S1, does not influence susceptibility to RA
    corecore