1,020 research outputs found

    Computing the local pressure in molecular dynamics simulations

    Full text link
    Computer simulations of inhomogeneous soft matter systems often require accurate methods for computing the local pressure. We present a simple derivation, based on the virial relation, of two equivalent expressions for the local (atomistic) pressure in a molecular dynamics simulation. One of these expressions, previously derived by other authors via a different route, involves summation over interactions between particles within the region of interest; the other involves summation over interactions across the boundary of the region of interest. We illustrate our derivation using simulations of a simple osmotic system; both expressions produce accurate results even when the region of interest over which the pressure is measured is very small.Comment: 11 pages, 4 figure

    Non-classical Photon Statistics For Two-mode Optical Fields

    Get PDF
    The non-classical property of subpoissonian photon statistics is extended from one to two-mode electromagnetic fields, incorporating the physically motivated property of invariance under passive unitary transformations. Applications to squeezed coherent states, squeezed thermal states, and superposition of coherent states are given. Dependences of extent of non-classical behaviour on the independent squeezing parameters are graphically displayed.Comment: 15 pages, RevTex, 5 figures, available by sending email to [email protected]

    Enrichment and association of lead and bacteria at particulate surfaces in a salt-marsh surface layer

    Get PDF
    The particle-laden surface layer (~ 150-370 µm) and subsurface waters of a South San Francisco Bay salt marsh were sampled over two tidal cycles and analyzed for particle numbers and particulate-associated and total concentrations of lead and bacteria…

    Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty

    Full text link
    We analyze the quantum dynamics of the non-relativistic two-dimensional isotropic harmonic oscillator in Heisenberg's picture. Such a system is taken as toy model to analyze some of the various quantum theories that can be built from the application of Dirac's quantization rule to the various symplectic structures recently reported for this classical system. It is pointed out that that these quantum theories are inequivalent in the sense that the mean values for the operators (observables) associated with the same physical classical observable do not agree with each other. The inequivalence does not arise from ambiguities in the ordering of operators but from the fact of having several symplectic structures defined with respect to the same set of coordinates. It is also shown that the uncertainty relations between the fundamental observables depend on the particular quantum theory chosen. It is important to emphasize that these (somehow paradoxical) results emerge from the combination of two paradigms: Dirac's quantization rule and the usual Copenhagen interpretation of quantum mechanics.Comment: 8 pages, LaTex file, no figures. Accepted for publication in Phys. Rev.

    Highly efficient and selective extraction of uranium from aqueous solution by a magnetic device: succinyl-ß-cyclodextrin-APTES@maghemite nanoparticles

    Get PDF
    The removal of radio-elements, notably uranium, from waste-waters is crucial for public health and environmental remediation. To this end, succinyl-ß-cyclodextrin (SßCD) is grafted onto maghemite nanoparticles (NPs) synthesized by the polyol method. The nanocomposite was well characterized. The adsorption of U(VI) by SßCD-APTES@Fe2O3 is pH-dependent with a maximum at pH 6. Adsorption occurs mainly by complex formation and displays a very good selectivity for U(VI) compared to other cations such as Cs+, K+, Na+, Mg2+ and Al3+. The data were plotted according to the Langmuir, Freundlich, Elovich, Temkin and Halsey isotherms. The Langmuir isotherm maximum adsorption capacity (qmax) is 286 mg U g-1 and higher than for other reported sorbents. Moreover, Cs-corrected STEM visualizes the uranium on the NP surface, which is consistent with the Halsey isotherm model for multilayer adsorption. The U(VI) adsorbed on SßCD-APTES@Fe2O3 is easily recovered by magnetic sedimentation and desorption performed in a small volume in order to concentrate the extract. The nanocomposite can be regenerated and re-used at least tenfold

    The Real Symplectic Groups in Quantum Mechanics and Optics

    Get PDF
    text of abstract (We present a utilitarian review of the family of matrix groups Sp(2n,)Sp(2n,\Re), in a form suited to various applications both in optics and quantum mechanics. We contrast these groups and their geometry with the much more familiar Euclidean and unitary geometries. Both the properties of finite group elements and of the Lie algebra are studied, and special attention is paid to the so-called unitary metaplectic representation of Sp(2n,)Sp(2n,\Re). Global decomposition theorems, interesting subgroups and their generators are described. Turning to nn-mode quantum systems, we define and study their variance matrices in general states, the implications of the Heisenberg uncertainty principles, and develop a U(n)-invariant squeezing criterion. The particular properties of Wigner distributions and Gaussian pure state wavefunctions under Sp(2n,)Sp(2n,\Re) action are delineated.)Comment: Review article 43 pages, revtex, no figures, replaced because somefonts were giving problem in autometic ps generatio
    corecore