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The non-classical property of subpoissonian photon statistics is extended from one to two-mode
electromagnetic fields, incorporating the physically motivated property of invariance under passive
unitary transformations. Applications to squeezed coherent states, squeezed thermal states, and
superposition of coherent states are given. Dependences of extent of non-classical behaviour on the
independent squeezing parameters are graphically displayed.

I. INTRODUCTION

Non-classical properties and effects of radiation [1] have received considerable attention in the past two decades
and continue to be an active area of research. Quadrature squeezing [2], subpoissonian photon statistics (SPS), and
antibunching [3] of photons are three prominent examples of such properties leading to measurable effects. Quadrature
squeezing is related to the reduction of noise in one of the two quadrature components below the coherent state value,
and has been both theoretically and experimentally studied for one-mode as well as multi-mode fields. Antibunching
arises when the photon number distribution becomes subpoissonian leading to anticorrelation in the photons detected
in a typical detection experiment. In all these cases, the diagonal coherent state description of the fields involved does
not have a classical interpretation and hence no classical description can explain these effects. The extension from
one to two or more modes for the case of quadrature squeezing is nontrivial and leads to new physical effects [4] [5].
The phenomenon of SPS has been formulated [6] and observed [7] primarily for one-mode situations. For situations
involving two or more modes, in the existing literature, such properties are invariably studied for one of the modes
or a predefined linear combination of the modes [8]. Such an analysis cannot be used to make any clear statement
about the classical or non-classical nature of the field involved, because the linear combination of modes which may
show SPS may in general be different from the mode chosen for the analysis. Another kind of generalisation of SPS to
two-mode fields has been done using a particular inequality involving the correlation between the two modes; however
this does not exhaust the possibilities available at the level of quadratic expressions in photon number [9]. This clearly
indicates the need for a more satisfactory way of looking at non-classical statistics, for fields involving two or more
modes.

Our aim in this paper is to develop a notion of SPS for two-mode fields which is intrinsically two-mode in character,
can be used in an unambiguous way to make a statement about the classical or non-classical nature of the field,
and has physically reasonable invariance properties. The group of linear, homogeneous, canonical transformations
Sp(4,ℜ), the symmetry group basic to the quantum mechanical description of the two-mode field, naturally splits
into two parts: the photon number conserving (maximal compact) passive subgroup U(2), and the photon number
nonconserving (non-compact) active part. The maximal compact subgroup U(2), while acting on the Hilbert space
of the two-mode system through its unitary representation, is incapable of generating a non-classical(classical) state
starting from a classical(non-classical) one because the diagonal coherent state distribution function is covariant
under such transformations. Therefore, it is reasonable to require that any signature of non-classicality for a two-
mode system, in particular SPS, be U(2) invariant. To achieve this we regard all modes related to the original ones
by passive U(2) transformations as basically equivalent; then a survey of the SPS properties for each mode in this
equivalence class of modes leads to the formulation of a U(2) invariant definition of SPS. We search over the set of all
modes for that one which minimizes the relevant parameter measuring number fluctuation minus the mean. In this
way, we arrive at that U(2) combination of the two modes which is most likely to be manifestly subpoissonian. A
much wider class of non-classical states can be explored using this formalism compared to the earlier ways of handling
two-mode situations.

The material in this paper is arranged as follows: In Section II we recapitulate the basic kinematics of two-mode
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systems and the action of the group Sp(4,ℜ) on the nonhermitian annihilation and creation operators. The hermitian
generators of this action, and the maximal compact subgroup U(2) ∈ Sp(4,ℜ), are recorded. The notion of U(2)-
invariant SPS is then developed by regarding all modes related to one another by (passive) SU(2) transformations as
equivalent, and by minimizing the variable one-mode Q parameter over the group SU(2). The algebraic machinery
needed to carry this out, for an arbitrary given state of the two-mode system, is set up. In Section III we consider
three applications: squeezed coherent states, squeezed thermal states and a general superposition of two coherent
states. In each case the analytic work is carried out as far as possible, and then we resort to numerical studies which
are graphically displayed. Section IV contains concluding remarks.

II. U(2) INVARIANT DEFINITION OF SUBPOISSONIAN PHOTON STATISTICS FOR TWO-MODE

SYSTEMS

We consider two orthogonal modes of the radiation field, their orthogonality being achievable by their having
different frequencies, orthogonal polarizations or different directions of propagation. These modes can be quantum
mechanically described by photon annihilation operators ar and corresponding photon creation operators a†r, where
r = 1, 2. These operators can be arranged as a column vector ξ(c):

ξ(c) = (ξ(c)a ) =









a1

a2

a†1
a†2









, a = 1 · · · 4. (2.1)

The superscript (c) on ξ indicates that the entries here are complex i.e. nonhermitian. The quadrature components of
these operators, which are the hermitian phase space variables q’s and p’s, can be written as another column vector,
related to ξ(c) by a fixed numerical matrix Ω:

ξ = (ξa) =







q1
q2
p1

p2






= Ω−1ξ(c), Ω = (Ω−1)† =

1√
2







1 0 i 0
0 1 0 i
1 0 −i 0
0 1 0 −i






(2.2)

The canonical commutation relations obeyed by the creation and annihilation operators can be written in terms of ξ
or ξ(c):

[ξa, ξb] = iβab,

[ξ(c)a , ξ
(c)
b ] = βab,

(βab) =







0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0






, (2.3)

A general real linear homogeneous transformation on the q’s and p’s which preserves these commutation relations
is described by a 4 × 4 real matrix S obeying the condition:

S β ST = β. (2.4)

This is the defining property for the elements of the non-compact group Sp(4,ℜ):

Sp(4,ℜ) =
{

S = 4 × 4 real matrix
∣

∣

∣ S β ST = β
}

. (2.5)

When ξ undergoes a transformation by S ∈ Sp(4,ℜ), the nonhermitian operators ξ(c) transform through a complex
matrix S(c), obtained from S by conjugation with Ω:

S ∈ Sp(4,ℜ) : ξ′ = Sξ ⇒
ξ(c)′ = S(c) ξ(c),

S(c) = Ω S Ω†. (2.6)
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The complex matrices S(c) are a faithful representation of the real matrix group Sp(4,ℜ). In this sense we will treat
them as elements of Sp(4,ℜ).

The maximal compact subgroup U(2) of Sp(4,ℜ) can be identified as follows:

K ≡ U(2) = {S(c)(U) ∈ Sp(4,ℜ)|U ∈ U(2)} ⊂ Sp(4,ℜ),

S(c)(U) =

(

U 0
0 U⋆

)

. (2.7)

The block diagonal form is responsible for the fact that such transformations do not mix a and a†; in fact K is the
largest subgroup with this property.

Let H be the Hilbert space on which ξ and ξ(c) act irreducibly. It follows from the Stone-von Neumann theorem [10]
that, since the canonical commutation and hermiticity relations are invariant under the transformation (2.6) for any
S(c) ∈ Sp(4,ℜ), it is possible to construct a unitary operator U(S(c)) on H implementing (2.6) via conjugation:

S(c) ∈ Sp(4,ℜ) : S
(c)
ab ξ

(c)
b = U(S(c))−1ξ(c)a U(S(c)),

U(S(c))†U(S(c)) = 1 on H. (2.8)

The generators of the operators U(S(c)) are given by ten independent, hermitian, quadratic expressions in ar and a†r.
We define the four photon number conserving generators J0, Jj and the six photon number non-conserving generators
Kj, Lj , j = 1, 2, 3:

J0 =
1

2
(N + 1) =

1

2
(a†1a1 + a†2a2 + 1); (2.9a)

J1 =
1

2
(a†1a2 + a†2a1),

J2 =
i

2
(a†2a1 − a†1a2),

J3 =
1

2
(a†1a1 − a†2a2); (2.9b)

K1 =
1

4
(a†1

2 + a2
1 − a†2

2 − a2
2),

K2 = − i

4
(a†1

2 − a2
1 + a†2

2 − a2
2),

K3 = −1

2
(a†1a

†
2 + a1a2); (2.9c)

L1 =
i

4
(a†1

2 − a2
1 − a†2

2 + a2
2),

L2 =
1

4
(a†1

2 + a2
1 + a†2

2 + a2
2),

L3 = − i

2
(a†1a

†
2 − a1a2). (2.9d)

These generators obey the commutation relations

[Jj , Jk] = iǫjklJl,

[J0, Jj ] = 0; (2.10a)

[Jj ,Kk or Lk] = iǫjkl(Kl or Ll),

[J0,Kj ± iLj] = ∓(Kj ± iLj); (2.10b)

[Kj,Kk] = [Lj , Lk] = −iǫjklJl,
[Kj, Lk] = iδjkJ0. (2.10c)

From the above commutation relations, it is clear that J0 and Jj form the algebra of U(2) and hence generate the
unitary operators corresponding to the elements of the maximal compact subgroup K of Sp(4,ℜ). On the other hand,
Kj and Lj are the generators of the unitary operators corresponding to the non-compact elements of Sp(4,ℜ) and
they do not form a closed algebra. These non-compact elements are actually the squeezing transformations and their
complete classification has been given elsewhere [4].

3



We now consider the notion of SPS for the physical states of a two-mode system. For one-mode systems, such an
analysis is simple and is based on Mandel’s Q parameter [6]:

Q =
〈a†2a2〉 − 〈a†a〉2

〈a†a〉 (2.11)

where a and a† are the annihilation and creation operators for the one-mode radiation field, the expectation values
being taken for the state of interest. The Q parameter distinguishes between physical states as having poissonian,
subpoissonian and superpoissonian photon statistics, as Q is 0, < 0 and > 0 for the above cases respectively. In
particular, the states with negativeQ are non-classical, in the sense that such a distribution can not be derived from any
classical statistical ensemble. Therefore, in this limited sense, the Q parameter can be used to classify states as classical
and non-classical. More precisely, Q < 0 (> 0) is a sufficient(necessary) condition for non-classicality(classicality).

For a situation involving two modes, the notion of SPS defined above is not appropriate. At the most, one can
analyze the photon statistics of one of the modes, or a preselected linear combination of both. Then again, for a given
state, this mode which one chooses need not be the one in which the photon number distribution may be non-classical.
Hence the sign of Q for the preselected mode may not disclose the non-classical nature of the two-mode state, even if
it is non-classical. This clearly indicates that an intrinsically two-mode notion of SPS is required.

The standard way [1] of distinguishing the classical from the non-classical states (already implicitly assumed in
the above) is through the diagonal coherent state description. The general two-mode coherent state with complex
two-component displacement z̃ = (z1, z2) is defined by

|z̃〉 = exp
(

z̃ · ã† − z̃⋆ · ã
)

|0, 0〉

= exp

(

−1

2
|z1|2 −

1

2
|z2|2

)

exp
(

z1a
†
1 + z2a

†
2

)

|0, 0〉. (2.12)

These are normalized states and form an over-complete set. A given two-mode density operator ρ can be expanded
in terms of them:

ρ =

∫

d2z1d
2z2

π2
φ(z1, z2)|z1, z2〉〈z1, z2| (2.13)

The unique normalized weight function φ(z1, z2) gives the complete description of the two-mode state and can in
general be a distribution which is quite singular [11]. In the case when φ(z1, z2) can be interpreted as a probability
distribution (i.e. it is nonnegative and is nowhere more singular than a delta function), equation (2.13) implies that
the state ρ is a classical mixture of coherent states which have a natural classical limit. Such quantum states are
referred to as classical; in contrast the others for which φ(z1, z2) either becomes negative or more singular than a
delta function somewhere, are defined as being non-classical. This classification is general and can be done for any
number of modes. In particular, for the one-mode case, the states having negative Q are a subset of the states with
non-classical diagonal coherent state distribution functions.

When the two-mode state, with density matrix ρ, transforms under a unitary operator corresponding to the compact
U(2) subgroup of Sp(4,ℜ), the distribution φ(z1, z2) undergoes a point transformation given in terms of the U(2)
matrix U ∈ U(2):

ρ′ = U(S(c)(U))ρU(S(c)(U))−1 ⇔ φ′(z1, z2) = φ(z′1, z
′
2),

(

z′1
z′2

)

= U

(

z1
z2

)

(2.14)

Thus, under U(2) transformations classical states map on to classical ones and non-classical states to non-classical
ones; these transformations are incapable of generating a non-classical state from a classical one. Therefore, it is
reasonable to demand that any signature of non-classicality be invariant under such transformations.

At this stage, we recapitulate and collect some interesting and important properties of the maximal compact
subgroup K of Sp(4,ℜ):

(a) As is clear from eqn.(2.7), when ξ(c) undergoes a U(2) transformation, the annihilation operators ar’s are not
mixed with the creation operators a†r’s.

(b) The action of the elements of U(2) (generated by J0 and Jj) on a state does not change the total photon number
or its distribution.
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(c) The diagonal coherent state distribution function is covariant under U(2) transformations.

(d) One requires only passive optical elements to experimentally implement any U(2) transformation on a state of
the two-mode electromagnetic field [12].

Motivated by the above considerations we now define an intrinsically two-mode and U(2) invariant notion of SPS.
For the purpose of our present analysis it is convenient to define U(2) transformed mode operators in terms of two
column vectors A and α:

A =

(

a1

a2

)

, α =

(

α1

α2

)

(2.15)

where α1 and α2 are complex numbers such that:

U(α) =

(

α⋆1 α⋆2
−α2 α1

)

∈ SU(2), |α1|2 + |α2|2 = 1 ;

U(α, ψ) =

(

α⋆1 α⋆2
−eiψα2 eiψα1

)

∈ U(2), 0 ≤ ψ ≤ 2π (2.16)

When ξ(c) undergoes a U(2) transformation given by U(α, ψ), the annihilation and creation operators for the first
transformed mode can be written in terms of A and α alone:

a(α) = α†A = α⋆1a1 + α⋆2a2

a(α)† = A†α = α1a
†
1 + α2a

†
2. (2.17)

Thus the most general normalized ”first mode” after the U(2) transformation is determined by SU(2) ∈ U(2) inde-
pendent of ψ. This particular mode will henceforth be called the SU(2) transformed mode, and α will be used to
denote the SU(2) element involved.

Let ρ be the density matrix for any (pure or mixed) state of the two-mode radiation field. Then we can define the
following function:

Q(ρ;α) =
〈a(α)†2a(α)2〉ρ − 〈a(α)†a(α)〉2ρ

〈A†A〉ρ

=
Tr(ρa(α)†2a(α)2) − (Tr(ρa(α)†a(α)))2

Tr(ρA†A)
(2.18)

which is similar to the Mandel Q parameter for the SU(2) transformed mode a(α).
When the state ρ is transformed by the unitary operator U(S(c)(U)) for some U ∈ U(2), the function Q(ρ;α) can

be shown to change covariantly:

S(c)(U) ∈ K : ρ′ = U(S(c)(U))ρU(S(c)(U))−1 ⇒
Q(ρ′;α) = Q(ρ;α′), α′ = Uα (2.19)

Now an overall phase change corresponding to elements in the U(1) subgroup of U(2) actually leaves Q(ρ;α) un-
changed, therefore no dependence on ψ has been shown. So we have the freedom of running over all α’s ∈ SU(2) i.e.
we can choose various linear combinations of the two modes involved, related to each other by SU(2) transformations.
Since we want to unearth the signature of the non-classical nature (if present) of the photon statistics, we vary α till
we reach the minimum value of the function Q(ρ;α):

Q(ρ) = Min
over all
α∈SU(2)

Q(ρ;α) = Q(ρ;α) s.t. Q(ρ;α) ≤ Q(ρ;α) (2.20)

If Q(ρ) < 0 we conclude that the photon number distribution for the two-mode state ρ has a non-classical feature and
we call it subpoissonian, or amplitude squeezed. This is our U(2) invariant definition of SPS for states of two-mode
fields. The mode in which the subpoissonian nature is manifest to the maximum degree is a(α).

The numerator in our definition ofQ(ρ;α) consists of two terms, one arising from the expectation values of quadratic
expressions in the creation and annihilation operators and the other arising from the expectation values of quartic
terms. The quadratic term can be written:
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Tr(ρa(α)†a(α)) = s+ ũ.q̃,

q̃ = q̃(α) = α†σ̃α, (2.21)

with the dependence on the state ρ and on α ∈ SU(2) being clearly separated. The state dependent variables s and
ũ transform under SU(2) like a scalar and a cartesian vector respectively, and can be evaluated from the equation

Tr(ρa†ras) = sδrs + uj(σj)rs r, s = 1, 2. (2.22)

The term involving the expectation values of quartics in ar and a†r can be written in terms of the non-compact

generators K̃ and L̃ of Sp(4,ℜ), and a vector λ̃ representing the SU(2) element involved:

Tr(ρa(α)†
2

a(α)2) =
1

4
λjλ

⋆
kHjk,

Hjk = H⋆
kj = Tr(ρ(Kj − iLj)(Kk + iLk)), j, k = 1, 2, 3 ,

λ̃ = λ̃(α) = −iαTσ2σ̃α, λ̃(α).λ̃(α) = 0. (2.23)

The hermitian matrix H can be written in terms of two real matrices, the real symmetric R and real antisymmetric
S, as H = R + iS. The matrix R transforms under SU(2) as a second rank tensor whereas the matrix S can be
represented by a cartesian vector ṽ under SU(2), related to S by vj = 1

2ǫjklSkl.

The denominator of Q(ρ;α) is U(2) invariant since the operator A†A = a†1a1 + a†2a2 is U(2) invariant; it does not
depend upon α and can be written in terms of s as:

D(Q(ρ;α)) = Tr(ρA†A) = 2s (2.24)

After some algebra, the complex vector λ̃ can be eliminated in favour of the real vector q̃, and Q(ρ;α) can be written
in terms of the state dependent symmetric second rank tensor R, the vectors ũ, ṽ and the scalar s as:

Q(ρ;α) = Q(ρ; q̃(α)) =
1

8s
(TrR− qjqkRjk + 2ṽ.q̃ − 4(s+ ũ.q̃)2) (2.25)

Using the U(2) covariance of Q(ρ;α), we can assume without loss of generality that the real symmetric matrix R is
diagonal, and eq(2.25) then takes the simpler form:

Q(ρ; q̃(α)) =
1

8s
(TrR−

∑

j

q2jRjj + 2ṽ.q̃ − 4(s+ ũ.q̃)2) (2.26)

The dependence of Q(ρ; q̃(α)) on α ∈ SU(2) is through the real unit vector q̃(α), which can be represented on the
surface of a unit sphere. In order to obtain the invariant Mandel parameter Q(ρ) for a given two-mode state, we have
to minimize Q(ρ; q̃(α)) with respect to q̃(α), the parameters R, ṽ, s, ũ being determined by ρ. The most convenient
coordinates which one chooses on the surface of the sphere to carry out this minimization will depend upon the
physical state ρ under consideration.

III. APPLICATION TO TWO-MODE SQUEEZED COHERENT STATES, SQUEEZED THERMAL

STATES AND SUPERPOSITION OF COHERENT STATES

In this Section, we apply the formalism developed in the previous Section to various interesting two-mode states.
Here we will see the relation with the classification of two-mode squeezing transformations given in [4].

A. The case of squeezed coherent states

The most general squeezed coherent state is obtained by applying the operator U(k̃, l̃) = ei(k̃.K̃+l̃.L̃) to the two-

mode coherent state |z1, z2〉 defined in eqn. (2.12), for some complex z1, z2, where K̃ and L̃ are the non-compact

generators of Sp(4,ℜ) defined in eqn. (2.9) and k̃ and l̃ are real vectors. The operator U(k̃, l̃) is conjugate to
U (0)(a, b) = exp i(aK2 + bL1) for some a ≥ b ≥ 0, via an operator U(Sc(U)):
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U(k̃, l̃) = U−1(S(c)(U))U (0)(a, b)U(S(c)(U)),

U (0)(a, b) = exp

(

(a− b)

4

(

a†
2

1 − a2
1

)

)

. exp

(

(a+ b)

4

(

a†
2

2 − a2
2

)

)

(3.1)

Each U (0)(a, b) is a representative of an equivalence class of two-mode squeezing transformations. For a = b we have
the essentially single mode case, while for b = 0 we have maximal involvement of the two modes. For the minimization
of U(2) covariantQ(ρ;α), the overall U(2) factor U−1(S(c)(U) is irrelevant. Also, the action of the operator U(S(c)(U))
on |z1, z2〉 transforms it into another coherent state |z′1, z′2〉, with z′1, z

′
2 related to z1, z2 through the corresponding

U(2) transformation. Thus it suffices to examine the particular class of squeezed coherent states

|z1, z2, a, b〉 = U (0)(a, b) |z1, z2〉. (3.2)

A complete discussion of the two-mode squeezing transformations and squeezed states has been given in [4].
The Mandel parameter Q(z1, z2, a, b; q̃(α)) for the SU(2) transformed mode for squeezed coherent states can be

calculated by straightforward algebra and turns out to be rather lengthy. The complete expression is given in the
appendix (eqn. (A1)). Q(z1, z2, a, b; q̃(α)) depends on a, b through hyperbolic functions and on |z1|, |z2| through
polynomial functions. Its dependence on the phases of z1 and z2 and the polar coordinates on the surface of the
unit sphere describing the unit vector q̃(α), is through trigonometric functions and is oscillatory in nature. In order
to obtain the invariant Mandel parameter, this function has to be minimized with respect to q̃(α). Since this is not
possible analytically, the results obtained numerically are displayed in Figures (1), (2) and (3) [13].

In each figure, we plot the minimum value of Q(z1, z2, a, b; q̃(α)) as a function of the squeeze factors a and b, keeping
the complex displacements z1 and z2 fixed. Figure (1(a)) displays the results for the squeezed vacuum; this never
shows SPS. The plots of Figures (1(b),(c) and (d)) on the other hand are obtained by varying the phase of one of the
displacements (z2), keeping its magnitude fixed, with the other displacement (z1) being zero. Different values for the
phase of the non-zero displacement give qualitatively different results; in particular when this phase is π

2 , as is clear
from Figure (1(d)) even some of the essentially single mode states lying along a = b show SPS. In Figure (2) we choose
equal magnitudes of displacements for the two modes; plots have been generated for different values of their phases.
The displacement parameters in Figure (3) are unequal in magnitude; four plots have been given for the same choices
of phase values as in the corresponding plots in Figure (2). The qualitative features of individual plots are similar to
the corresponding plots in Figure (2) though the actual values of the invariant Mandel parameter are different.

We now make some general remarks about the results described above. In all the plots of the three Figures (1),
(2) and (3), every point in the region b > a can be mapped onto a corresponding unique point in some region a > b
(which is in general not in the same figure), through that U(2) transformation of the displacements z1 and z2, which
effectively changes U (0)(a, b) to U (0)(b, a). Whenever the displacement parameters are invariant under this particular
U(2) transformation, the plot has a symmetry about the line a = b; as in all the plots of Figure (1). Such a symmetry
is not exhibited by the plots of Figures (2) and (3). In all the plots the invariant Mandel parameter is zero or negative
along the line a = b i.e. for the subset of essentially single mode squeezed states. This happens because, even though
the choice of displacement parameters is such that the single mode which is squeezed has superpoissonian statistics,
(Q > 0), the minimisation chooses the other mode which is in a coherent state (Q = 0). Apart from the case of
squeezed vacuum(Figure (1a)) all other choices of displacement show SPS for some values of the squeeze parameters
a, b. When squeezing becomes large in comparison to the displacement, and we are away from the line a = b, SPS
disappears and the states tend to become more and more superpoissonian.

B. The case of squeezed thermal states

We next look at the case of a two-mode isotropic thermal state subjected to squeezing. The normalized density
operator corresponding to the inverse temperature β = h̄ω/kT is explicitly U(2) invariant and described in the Fock
representation by:

ρ0(β) = (1 − e−β)2 exp
[

−β(a†1 a1 + a†2 a2)
]

= (1 − e−β)2
∞
∑

n1,n2=0

e−β(n1+n2)|n1, n2〉〈n1, n2|, (3.3)

with U(2) invariance expressed by:

eiθJ0 ρ0(β) e−iθJ0 = ei~α · ~J ρ0(β) e−i~α · ~J = ρ0(β). (3.4)
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Therefore it suffices to examine the properties of the density operator obtained by conjugating ρ0(β) with U (0)(a, b):

ρ(β; a, b) = U (0)(a, b) ρ0(β) U (0)(a, b)−1. (3.5)

The Mandel parameter Q(β; a, b; q̃(α)) for the state ρ(β; a, b) is calculable by straightforward algebra:

Q(β; a, b; q̃(α)) =
[

(eβ − 1) (2 (1 − eβ) + 2 (1 + eβ) cosh(2a) cosh(2b))
]−1 ×

[

1

4

(

(1 − q23) (2 (1 − eβ)2 + 4 (1 − e2β) cosh(2a) cosh(2b) + (1 + eβ)2 ( cosh(4a) + cosh(4b)))

+ (1 + eβ)2 (q1
2 − q2

2)( cosh(4a) − cosh(4b))

−1

2
(1 + q3

2) (10 − 12eβ + 10e2β + 16 (1 − e2β) cosh(2a) cosh(2b) + 6 (1 + eβ)2 cosh(4a) cosh(4b))

)

−1

2
((1 + eβ) q3 (4 − 4eβ + 6(1 + eβ) cosh(2a) cosh(2b)) sinh(2a) sinh(2b))

−1

2
((2 − 2eβ + 2(−1 + e2β) cosh(2a) cosh(2b)) + ((1 + eβ) q3 sinh(2a) sinh(2b)))2

]

(3.6)

here q1, q2, q3 are the cartesian components of q̃ with q21 + q22 + q23 = 1.
The minimum value of the function Q(β, a, b, q̃(α)), the parameter Q(ρ(β, a, b)), can be calculated analytically.

The state ρ(β, a, b) being the squeezed thermal state is always superpoissonian. For a given temperature(given β)
this superpoissonian nature is least for the case when only one mode is squeezed(a = b), increases as the squeezing
becomes increasingly two mode in nature and finally is maximum when the state is maximally two mode squeezed i.e.
when a = 0 (b = 0) for a given b (a). When the temperature is changed the states with higher temperatures (lower β)
are more superpoissonian compared to the ones at lower temperatures (higher β).Thus for fixed a and b, Q(β; a, b)
increases as β decreases. The actual plots of Q(ρ(β, a, b)) as a function of a, b are given at different temperatures in
Figure( 4) [13].

It is interesting to note that the particular mode for which the function Q(ρ(β, a, b), q̃(α)) is minimum turns out
to be one of the original modes, corresponding to q3 = ±1. This happens because the thermal state density matrix
ρ0(β) is explicitly U(2) invariant and the representative two-mode squeezing operator U (0)(a, b) can be factorized into
two commuting operators, each pertaining to one of the original modes see eq. (3.1). In general, for a different choice
of the representative operators, the minima could occur at an arbitrary SU(2) transformed first mode. All the plots
of Figure( 4) are symmetric about the line a = b because of the explicit U(2) invariance of the thermal state density
matrix ρ0(β) (eqn.( 3.4)).

C. The case of superposition of coherent states

Lastly we apply our formalism to the superposition of two two-mode coherent states. In this case, no squeezing
transformation U (0)(a, b) is involved. For simplicity we consider only the case with real displacements.

A general superposition of two two-mode coherent states with real displacements and a phase difference η between
them is given by:

|ψ(u1, u2, v1, v2, r, η)〉 =
1

N
(|u1, u2〉 + r exp (iη)|v1, v2〉)

where N2 = 1 + r2 + 2 r cos η exp

(

−1

2
(u2

1 + u2
2 + v2

1 + v2
2) + u1 v1 + u2 v2

)

(3.7)

With the help of a U(2) transformation, without any loss of generality we can set v2 = 0 and thus it suffices to
study only the states |ψ(u1, u2, v1, 0, r, η)〉. The Mandel parameter for the SU(2) transformed mode, the function
Q(u1, u2, v1, r, η; q̃(α)) for this superposition of coherent states is given in terms of the polar coordinates θ and φ on
the surface of the sphere representing q̃ as:

Q(u1, u2, v1, r, η; q̃(α)) =
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[

4
(

u2
1 + u2

2 + r2 v2
1 + 2 e−

1
2 (u1

2+u2
2+v1

2)+u1 v1 r u1 v1 cos(η)
)]−1

×
[(

1 + r2 + 2 e−
1
2 (u2

2+(u1−v1)2) r cos(η)
)

×
(

4
(

u1
4 + r2 v1

4
)

cos(
θ

2
)
4

+ 4 u2
4 sin(

θ

2
)
4

+ 8 u1
3 u2 cos(

θ

2
)
2

cos(φ) sin(θ)

+8 u1 u2
3 cos(φ) sin(

θ

2
)
2

sin(θ) + 2 u1
2 u2

2 (2 + cos(2φ)) sin(θ)
2

)

+r
(

e−
1
2 (u2

2+(u1−v1)2)
(

1 + r2
)

+ 2 e−u2
2−(u1−v1)

2

r cos(η)
)

×
(

8 u1
2 v1

2 cos(
θ

2
)
4

cos(η)

+8 u1 u2 v1
2 cos(

θ

2
)
2

cos(η + φ) sin(θ) + 2 u2
2 v1

2 cos(η + 2φ) sin(θ)
2

)

−
(

2
(

u1
2 + r2 v1

2
)

cos(
θ

2
)
2

+ 2 u2
2 sin(

θ

2
)
2

+ 2 u1 u2 cos(φ) sin(θ)

+
1

2
e−

1
2 (u2

2+2 (u1−v1)
2) r

(

4 u1 v1 cos(
θ

2
)
2

cos(η) + 2 u2 v1 cos(η + φ) sin(θ)

))2
]

(3.8)

The minimum values of this function with respect to θ and φ have been computed numerically and the results are
shown in Figure (5). Each plot in this figure contains two curves showing Q(ρ) as a function of the relative phase η
corresponding to two different values of relative weight factor r. The amount of SPS varies with the relative phase
in a similar way for all the plots. For all parameter values in all plots Q(ρ) ≤ 0. This happens because the most
general superposition of two two-mode coherent states can be transformed with the help of a U(2) transformation
into a product state with one factor being a coherent state, and the other a superposition of two one-mode coherent
states:

1

N
(|u′1〉 + r exp (iη)|v′1〉)|v′2〉 =

1

N
U(S(c)(U))(|u1, u2〉 + r exp (iη)|v1, v2〉) (3.9)

Thus when Q(ρ;α) turns out to be nowhere negative the minimization chooses that U(2) transformed mode which is
in a coherent state.

It is interesting to point out that for a factorized two-mode state such as the expression on the left hand side
of eqn. (3.9), the mode a(α)which minimizes Q(ρ;α) is generally neither of the two initial modes but a nontrivial
combination of them.

IV. CONCLUDING REMARKS

The main aim of this paper has been to develop a specific signature of non-classicality for two-mode states. Both
quadrature squeezing and SPS are well defined concepts for a single mode. In this paper we have extended the notion
of SPS to two modes by showing how to choose the appropriate single mode which shows SPS to the maximum extent,
considering all modes related to each other by passive U(2) transformations as equivalent. A similar treatment of
quadrature squeezing has been given elsewhere.

We would like to emphasize the subtle role played by the choice of the denominator of Q(ρ;α). Any choice which
is everywhere non-negative will not change the qualitative results obtained from the minimization of Q(ρ;α) i.e. the
super or subpoissonian nature of the state ρ. However the extent of SPS, and the location of the most non-classical
mode, depend upon the exact choice one makes for the denominator. To illustrate this point we choose the two-mode
Fock state |n1, n2〉. The Mandel parameter for the SU(2) transformed mode is given by:

Q(n1, n2, q̃(α)) =
1

4 (n1 + n2)
×
(

−2 (n1 + n2) + (n1 + n2)
2+

(n1(1 − n1) + n2(1 − n2) )
(

q1
2 + q2

2
)

− 2 (n1 − n2) q3 − (n1 + n2)
2
q3

2
)

(4.1)

This function reaches its minimum at q3 = +1 with minimum value − n1
n1 + n2

for n1 > n2 and at q3 = −1 with the

minimum value − n2
n1 + n2

for n2 > n1. Thus for our U(2) invariant choice of the denominator Tr(ρA†A), for a Fock

9



state, the mode with the larger number of photons is more non-classical. On the other hand if one chooses the U(2)
covariant denominator Tr(ρa(α)†a(α)), for a Fock state, both the modes are equally non-classical irrespective of the
number of photons present in each mode: the minimum value of this alternatively defined parameter is −1 for each
mode.

For one-mode fields the Mandel parameter can be written as a function of the number operator a†a and hence
is determined by (the moments of) the photon number distribution. In contrast, for two-mode fields the Mandel

parameter for the SU(2) transformed mode can not be expressed as a function of the number operators a†1a1 and

a†2a2 and therefore is not determined by the photon number distributions in the original modes. There could be other
signatures of non-classicality which are meaningful at the one-mode level and can be extended in the spirit of this
paper to more than one mode. In contrast, it will be interesting to explore the possibility of having signatures of
non-classicality which are not definable at the one-mode level at all, but are present only at the two-mode level. These
will be presented elsewhere.
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APPENDIX A:

We give here the function Q(z1, z2, a, b;α) for the squeezed coherent state with z1 = ueiϕu and z2 = veiϕv . The first
term is the denominator, followed by the numerator terms arranged according to their dependence on a and b. First
the terms independent of a, b appear, followed by the ones depending upon a or b alone, and then the ones depending
on both a and b. The last three terms originate from quadratic expressions of creation and annihilation operators and
are not arranged.

Q(α; z1, z2, a, b) =

2
[

−2 + cosh(2 (a− b)) + 2 u2 cosh(2 (a− b)) + cosh(2 (a+ b)) + 2 v2 cosh(2 (a+ b))

+ 2 u2 cos(2ϕu) Sinh(2 (a− b)) + 2 v2 cos(2ϕv) Sinh(2 (a+ b))
]−1 ×

[

1

8

(

5 + u4 + v4 + 2
(

u2 + v2
))

+
1

8

(

v4 cos(4ϕv) (−1 + cos(θ))
)

+
1

8

((

u2 − v2
) (

2 + u2 + v2
)

cos(θ)
)

−1

8

(

u4 cos(4ϕu) (1 + cos(θ))
)

− 1

16

(

(

1 + u2
(

2 + u2 − u2 cos(4ϕu)
)

+ v2
(

2 + v2 − v2 cos(4ϕv)
))

sin(θ)2
)

+
1

4

(

u v cosh(2a)

(

−8 cos(φ) cos(ϕu − ϕv) −
(

2 + u2 + v2 +
(

u2 − v2
)

cos(θ)
)

sin(φ) sin(ϕu − ϕv)
−u2 (1 + cos(θ)) sin(φ) sin(3ϕu + ϕv) + v2 (1 − cos(θ)) sin(φ) sin(ϕu + 3ϕv)

))

sin(θ)

+
1

4

(

u v

(

−8 cos(φ) cos(ϕu + ϕv) −
(

u2 − v2 +
(

2 + u2 + v2
)

cos(θ)
)

sin(φ) sin(ϕu + ϕv)
−v2 (1 − cos(θ)) sin(φ) sin(ϕu − 3ϕv) − u2 (1 + cos(θ)) sin(φ) sin(3ϕu − ϕv)

)

sin(θ) Sinh(2a)

)

+
1

4

(

u v cosh(−2b)

(

8 sin(φ) sin(ϕu − ϕv) sin(θ) + cos(φ) cos(ϕu − ϕv)
(

2 + u2 + v2 +
(

u2 − v2
)

cos(θ)
)

− cos(φ) 2 u2 cos(3ϕu + ϕv) cos( θ2 )
2 − 2 v2 cos(φ) cos(ϕu + 3ϕv) sin( θ2 )

2
sin(θ)

))

+
1

4

(

u v

(

v2 cos(φ) cos(ϕu − 3ϕv) (−1 + cos(θ)) + u2 cos(φ) cos(3ϕu − ϕv) (1 + cos(θ))
− cos(φ) cos(ϕu + ϕv)

(

u2 − v2 +
(

2 + u2 + v2
)

cos(θ)
)

− 8 sin(φ) sin(ϕu + ϕv)

)

sin(θ) Sinh(−2b)

)

+
1

8

(

3 + 12 u2 + 6 u4 + 2 u4 cos(4ϕu)
)

cos(
θ

2
)
4

cosh(4(a − b))

+
1

8

(

3 + 12 v2 + 6 v4 + 2 v4 cos(4ϕv)
)

cosh(4(a + b)) sin(
θ

2
)
4

+
1

2

(

u2
(

3 + 2 u2
)

cos(2ϕu) cos(
θ

2
)
4

Sinh(4(a − b))

)

+
1

2

(

v2
(

3 + 2 v2
)

cos(2ϕv) sin(
θ

2
)
4

Sinh(4(a + b))

)

+ cosh(2(a− b))

(

−
(

(

1 + 2 u2
)

cos(
θ

2
)
2)

+
u2 v2 cos(2ϕu) sin(2φ) sin(2ϕv) sin(θ)

2

2

)

+ cosh(2(a− b))

(

−
(

(

1 + 2 v2
)

sin(
θ

2
)
2)

− u2 v2 cos(2ϕv) sin(2φ) sin(2ϕu) sin(θ)
2

2

)

+

(

−
(

u2 cos(2ϕu) (1 + cos(θ))
)

+

(

1 + 2 u2
)

v2 sin(2φ) sin(2ϕv) sin(θ)
2

4

)

Sinh(2(a− b))

+

(

v2 cos(2ϕv) (−1 + cos(θ)) − u2
(

1 + 2 v2
)

sin(2φ) sin(2ϕu) sin(θ)2

4

)

Sinh(2(a− b))

+
1

4

(

((

1 + 2 u2
) (

1 + 2 v2
)

+ 2 u2 v2 cos(2φ) cos(2ϕu) cos(2ϕv)
)

cosh(2(a− b)) cosh(2(a− b)) sin(θ)
2
)

+
1

8

(

(

4 u2
(

1 + 2 v2
)

cos(2ϕu) + 2
(

1 + 2 u2
)

v2 cos(2φ) cos(2ϕv)
)

cosh(2(a− b)) sin(θ)2 Sinh(2(a− b))
)
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+
1

8

(

((

1 + 2 u2
) (

1 + 2 v2
)

cos(2φ) + 8 u2 v2 cos(2ϕu) cos(2ϕv)
)

sin(θ)
2
Sinh(2(a− b)) Sinh(2(a− b))

)

+
1

8

(

(

2 u2
(

1 + 2 v2
)

cos(2φ) cos(2ϕu) + 4
(

1 + 2 u2
)

v2 cos(2ϕv)
)

cosh(2(a− b)) sin(θ)2 Sinh(2(a− b))
)

+
1

2

(

u v cos(φ)
(

3
(

1 + u2
)

cos(ϕu − ϕv) + u2 cos(3ϕu + ϕv)
)

cos(
θ

2
)
2

cosh(2(2a− b)) sin(θ)

)

+
1

2

(

u v cos(φ)
(

u2 cos(3ϕu − ϕv) + 3
(

1 + u2
)

cos(ϕu + ϕv)
)

cos(
θ

2
)
2

sin(θ) Sinh(2(2a− b))

)

+
1

2

(

u v cos(φ)
(

3
(

1 + v2
)

cos(ϕu − ϕv) + v2 cos(ϕu + 3ϕv)
)

cosh(2(2a+ b)) sin(
θ

2
)
2

sin(θ)

)

+
1

2

(

u v cos(φ)
(

v2 cos(ϕu − 3ϕv) + 3
(

1 + v2
)

cos(ϕu + ϕv)
)

sin(
θ

2
)
2

sin(θ) Sinh(2(2a+ b))

)

+
1

2

(

u v cos(
θ

2
)
2

sin(φ)
(

−
(

u2 sin(3ϕu − ϕv)
)

+ 3
(

1 + u2
)

sin(ϕu + ϕv)
)

sin(θ) Sinh(2(a− 2 b))

)

+
1

2

(

u v sin(φ)
(

v2 sin(ϕu − 3ϕv) + 3
(

1 + v2
)

sin(ϕu + ϕv)
)

sin(
θ

2
)
2

sin(θ) Sinh(−2(a+ 2b))

)

−1

2

(

u v cosh(−2(a+ 2b)) sin(φ)
(

3
(

1 + v2
)

sin(ϕu − ϕv) + v2 sin(ϕu + 3ϕv)
)

sin(
θ

2
)
2

sin(θ)

)

+
1

2

(

u v cos(
θ

2
)
2

cosh(2(a− 2 b)) sin(φ)
(

−3
(

1 + u2
)

sin(ϕu − ϕv) + u2 sin(3ϕu + ϕv)
)

sin(θ)

)

+
1

2

(

u2 v2 cos(2φ) sin(2ϕu) sin(2ϕv) sin(θ)
2
)

−
[

−1

2
+

(1 + cos(θ))
((

1 + 2 u2
)

cosh(2(a− b)) + 2 u2 cos(2ϕu) Sinh(2(a− b))
)

4

]

+
(1 − cos(θ))

((

1 + 2 v2
)

cosh(2(a− b)) + 2 v2 cos(2ϕv) Sinh(2(a− b))
)

4

+u v sin(θ)

(

sin(φ) (cosh(−2b) sin(ϕu − ϕv) − sin(ϕu + ϕv) Sinh(−2b))
+ cos(φ) (cos(ϕu − ϕv) cosh(2a) + cos(ϕu + ϕv) Sinh(2a))

)]2
]

(A1)
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FIG. 1. Plots of the invariant Mandel parameter Q(ρ) for squeezed coherent states as a function of squeeze parameters a and
b. Fig.1(a) shows the plot for squeezed vacuum i.e. z1 = z2 = 0. Figures(1(b), (c) and (d)) show the plots for |z1| = 0, |z2| = 3.0
and the phase of z2 taking the values 0, π/4 and π/2 respectively.

FIG. 2. Plots of the invariant Mandel parameter Q(ρ) for squeezed coherent states as a function of squeeze parameters a
and b for the case when the magnitudes of the displacements in the two modes are equal: |z1| = |z2| = 2.0. The values of the
phases of z1 and z2 in Figures(2(a),(b),(c) and (d)) are (0, 0), (0, π/4), (0, π/2) and (π/2, π/2) respectively.

FIG. 3. Plots of the invariant Mandel parameter Q(ρ) for squeezed coherent states as a function of squeeze parameters a
and b for the case when the magnitudes of the displacements in the two modes are unequal: |z1| = 2.0 and |z2| = 4.0. The
values of the phases of z1 and z2 in Figures(3(a),(b),(c) and (d)) are (0, 0), (0, π/4), (0, π/2) and (π/2, π/2) respectively.

FIG. 4. Plots of the invariant Mandel parameter Q(ρ) for squeezed thermal states as a function of squeeze parameters a and
b at different inverse temperatures; β takes the values 0.5, 1.0, 2.0 and 4.0 in Figures(4(a),(b),(c) and (d)) respectively.

FIG. 5. Plots of invariant Mandel parameter Q(ρ) for superposition of two two-mode coherent states as a function of the
phase difference between the two states are shown for two different values of relative weight, r = 0.5 and r = 1.0,and a given
set of displacements. Values of displacements u1, u2 and v2 are (0.5, 0.5, 1.0), (0.5, 1.0, 1.0), (1.5, 1.0, 1.0) and (1.5, 1.0, 0.5)
for Figures(5(a),(b),(c), and (d)) respectively.
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