2 research outputs found

    Structure of the archaeal Cascade subunit Csa5 : Relating the small subunits of CRISPR effector complexes

    Get PDF
    This work was funded by a grant from the Biotechnology and Biological Sciences Research Council (BBSRC) (REF: BB/G011400/1) to M.F.W. and J.H.N. and a BBSRC-funded studentship to J.R.The Cascade complex for CRISPR-mediated antiviral immunity uses CRISPR RNA (crRNA) to target invading DNA species from mobile elements such as viruses, leading to their destruction. The core of the Cascade effector complex consists of the Cas5 and Cas7 subunits, which are widely conserved in prokaryotes. Cas7 binds crRNA and forms the helical backbone of Cascade. Many archaea encode a version of the Cascade complex (denoted Type I-A) that includes a Csa5 (or small) subunit, which interacts weakly with the core proteins. Here, we report the crystal structure of the Csa5 protein from Sulfolobus solfataricus. Csa5 comprises a conserved α-helical domain with a small insertion consisting of a weakly conserved β-strand domain. In the crystal, the Csa5 monomers have multimerized into infinite helical threads. At each interface is a strictly conserved intersubunit salt bridge, deletion of which disrupts multimerization. Structural analysis indicates a shared evolutionary history among the small subunits of the CRISPR effector complexes. The same α-helical domain is found in the C-terminal domain of Cse2 (from Type I-E Cascade), while the N-terminal domain of Cse2 is found in Cmr5 of the CMR (Type III-B) effector complex. As Cmr5 shares no match with Csa5, two possibilities present themselves: selective domain loss from an ancestral Cse2 to create two new subfamilies or domain fusion of two separate families to create a new Cse2 family. A definitive answer awaits structural studies of further small subunits from other CRISPR effector complexes.Publisher PDFPeer reviewe

    Five Design Challenges

    No full text
    PLEASE NOTE: Where applicable, the audio has been removed from this file due to copyrighted material. The garments shown here represent the Classes of \u2713, \u2712 and \u2711 . The garments were created in response to the following five design challenges: Sophomores, Class of \u2713: Re-Innovative Design: explore the properties of recycled materials other than fabric while creating a wearable piece. Print Design Project create a garment that makes optimal use of printed fabric designed by a RISD Textiles student. Juniors, Class of \u2712: Knitwear Design: explore the properties of knits and design cut-and-sew and machine-knit garments. Tailoring Project: interpret traditional tailoring techniques to create a look with a jacket. Seniors, Class of \u2711: Cocktail Collection: design a collection of contemporary cocktail apparel in collaboration with the current RISD Museum exhibition Cocktail Culture: Ritual and Invention in American Fashion, 1920-1980
    corecore