32 research outputs found

    Evaluation of the in-situ Performance of Neutron Detectors based on EJ-426 Scintillator Screens for Spent Fuel Characterization

    Full text link
    The reliable detection of neutrons in a harsh gamma-ray environment is an important aspect of establishing non-destructive methods for the characterization of spent nuclear fuel. In this study, we present results from extended in-situ monitoring of detector systems consisting of commercially available components: EJ-426, a 6^6Li-enriched solid-state scintillator material sensitive to thermal neutrons, and two different types of Hamamatsu photomultiplier tubes (PMT). Over the period of eight months, these detectors were operated in close vicinity to spent nuclear fuel stored at the interim storage facility CLAB, Oskarshamn, Sweden. At the measurement position the detectors were continuously exposed to an estimated neutron flux of approx. 280 n/s \cdot cm2^2 and a gamma-ray dose rate of approx. 6 Sv/h. Using offline software algorithms, neutron pulses were identified in the data. Over the entire investigated dose range of up to 35 kGr, the detector systems were functioning and were delivering detectable neutron signals. Their performance as measured by the number of identified neutrons degrades down to about 30% of the initial value. Investigations of the irradiated components suggest that this degradation is a result of reduced optical transparency of the involved materials as well as a reduction of PMT gain due to the continuous high currents. Increasing the gain of the PMT through step-ups of the applied high voltage allowed to partially compensate for this loss in detection sensitivity. The integrated neutron fluence during the measurement was experimentally verified to be in the order of 51095 \cdot 10^9 n/cm2^2. The results were interpreted with the help of MCNP6.2 simulations of the setup and the neutron flux

    Blind Benchmark Exercise for Spent Nuclear Fuel Decay Heat

    Get PDF
    The decay heat rate of five spent nuclear fuel assemblies of the pressurized water reactor type were measured by calorimetry at the interim storage for spent nuclear fuel in Sweden. Calculations of the decay heat rate of the five assemblies were performed by 20 organizations using different codes and nuclear data libraries resulting in 31 results for each assembly, spanning most of the current state-of-the-art practice. The calculations were based on a selected subset of information, such as reactor operating history and fuel assembly properties. The relative difference between the measured and average calculated decay heat rate ranged from 0.6% to 3.3% for the five assemblies. The standard deviation of these relative differences ranged from 1.9% to 2.4%

    A Detector System for Light–Element Analysis using a Nuclear Microprobe : for Applications in Geoscience

    No full text
    I detta arbete har två analysmetoder med mycket hög känslighet för att mäta väte och bor utvecklats. Dessa har tillämpats på geologiska material där de kan vara ett verktyg i att svara på frågeställningar gällande b.la. jordskorpans utveckling och flödet av vatten på jorden. Metoderna kan mäta en väte- eller bor-atom bland en miljon andra atomer. Jonstråleanalys är ett fält inom den tillämpade fysiken som använder sig av strålar med laddade partiklar, vanligtvis protoner (väteatomkärnor) eller alfapartiklar (heliumatomkärnor) med hög energi för att genomföra grundämnesanalys av prover. De laddade partiklarna accelereras med hjälp av en accelerator upp till en energi av ca 3 MeV, vilket motsvaras av att partikeln har accelererats av det elektriska fältet från en spänning på 3 miljoner volt över en sträcka på en meter. Då dessa partiklar skjuts in i provet sker en mängd reaktioner och kollisioner med både atomernas elektroner och med atomkärnorna i provet. I en del av dessa reaktioner uppstår högenergetisk elektromagnetiskstrålning, i form av röntgen- eller gamma-strålning. Det kan också sändas ut laddade partiklar från provet, antingen i form av kärnreaktionsprodukter eller spridda partiklar från jonstrålen. Med rätt detektorutrustning kan denna strålning mätas och slutsatser kan dras om provets massfördelning och koncentrationen av olika grundämnen. Jonstrålen kan fokuseras ner till en tusendels millimeter och flyttas över provet, och på så vis bestrålas endast en liten del av provet åt gången. Genom att sedan flytta strålen över provet kan kartor över provets grundämneskoncentration och massfördelning skapas. I de flesta fall går det även att få ut på vilket djup i provet som grundämnet befinner på. Med hjälp av denna tredimensionella information kan man t.ex. studera hur olika ämnen fördelar sig i provet.Jonstråleanalysmetoderna kan med lätthet detektera de flesta grundämnena i det periodiska systemet. De svåra grundämnena är de som är lättare än aluminium. Dessa grundämnen är svåra eftersom sannolikheten för att de laddade partiklarna växelverkar med de lätta atomerna är liten för de reaktioner som används av de vanligaste jonanalysmetoderna.Målet med detta arbete är att utveckla redan existerande jonstråletekniker för att mäta väte, tungt väte (en vätekärna med en extra neutron) och bor. Analysen av förhållandet mellan väte och tungt väte utförs genom att en tung-vätekärna skjuts in i provet och om den kolliderar med en väteatom (vanligt väte eller tungt väte) så sprids både den inkommande väteatomkärnan och väteatomen ut genom provet och detekteras samtidigt parvis i två av de 2048 detektorerna som finns bakom provet. Boranalysen genomförs istället genom att en proton sänds in i provet och när denna stöter på en boratom så sker en kärnreaktion i provet. Vid kärnreaktionen bildas tre stycken högenergetiska heliumkärnor. Genom att detektera dessa kan koncentrationen av bor bestämmas

    A tailored 200 parameter VME based data acquisition system for IBA at the Lund Ion Beam Analysis Facility - Hardware and software

    No full text
    With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated

    Radiation tolerance of ultra-thin PIN silicon detectors evaluated with a MeV proton microbeam

    No full text
    A focused MeV proton beam at the Lund Ion Beam Analysis Facility has been used to induce radiation damage in transmission semiconductor detectors. The damage alters the response of detectors and degrades their charge transport properties. In this work, the radiation tolerance of ultra-thin silicon PIN detectors was studied as a function of proton fluences and detector thickness using a scanning proton microprobe. The investigated detectors had thicknesses ranging between 6.5 and 22 mu m, and different selected regions of each detector were irradiated with fluence up to 2 x 10(15) protons/cm(2). The results show that the charge collection efficiency (CCE) decreases as a function of the proton fluence. Compared with non-irradiated regions, the CCE was above 94% at the lowest fluence of 2 x 10(12) protons/cm(2) for all the detectors studied. Degradation of the devices caused spectral peak shifting toward lower energies. The highest possible fluence of 2.55 MeV protons that could be used, causing only minor radiation damage, was 2 x 10(13) cm(-2) for the thinnest detectors (6.5 and 10 mu m) and 2 x 10(12) cm(-2) for the thickest detectors (15 and 22 mu m)
    corecore