48 research outputs found

    Aircraft Combat Survivability Calculation Based on Combination Weighting and Multiattribute Intelligent Grey Target Decision Model

    Get PDF
    Aircraft combat survivability is defined as the capability of an aircraft to avoid or withstand a man-made hostile environment, which has been increasingly important. In order to give a rational calculation of aircraft combat survivability, an integrated method based on combination weighting and multiattribute intelligent grey target decision model is proposed. Firstly, an evaluation index system containing susceptibility index and vulnerability index as well as their subindexes is established. Then a multiattribute intelligent grey target decision model is introduced. A combination weighting method is brought up based on a modified AHP (analytic hierarchy process) method and the entropy method, offering a rational weight for various indexes. Finally, utilize the multiattribute intelligent grey target decision model to assess the aircraft combat survivability of aircraft, verified by a practical case of five aircraft. The results show that the proposed method is effective and has a great value in engineering application, which will provide useful references for other projects’ evaluation

    From ab initio quantum mechanics to molecular neurobiology: A cation-pi binding site in the nicotinic receptor

    Get PDF
    The nicotinic acetylcholine receptor is the prototype ligand-gated ion channel. A number of aromatic amino acids have been identified as contributing to the agonist binding site, suggesting that cation-pi interactions may be involved in binding the quaternary ammonium group of the agonist, acetylcholine. Here we show a compelling correlation between: (i) ab initio quantum mechanical predictions of cation-pi binding abilities and (ii) EC50 values for acetylcholine at the receptor for a series of tryptophan derivatives that were incorporated into the receptor by using the in vivo nonsense-suppression method for unnatural amino acid incorporation. Such a correlation is seen at one, and only one, of the aromatic residues-tryptophan-149 of the alpha subunit. This finding indicates that, on binding, the cationic, quaternary ammonium group of acetylcholine makes van der Waals contact with the indole side chain of alpha tryptophan-149, providing the most precise structural information to date on this receptor. Consistent with this model, a tethered quaternary ammonium group emanating from position alpha 149 produces a constitutively active receptor

    Optimization of gas-filled quartz capillary discharge waveguide for high-energy laser wakefield acceleration

    Get PDF
    A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to similar to 7.5-14.7 Torr and decreasing the discharge current to similar to 70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide

    Ultralow-emittance measurement of high-quality electron beams from a laser wakefield accelerator

    Get PDF
    By designing a cascaded laser wakefield accelerator, high-quality monoenergetic electron beams (e beams) with peak energies of 340–360MeV and rms divergence of <0.3 mrad were produced. Based on this accelerator, the e-beam betatron radiation spectra were measured exactly via the single-photon counting technique to diagnose the e-beam transverse emittance in a single shot. The e-beam transverse size in the wakefield was estimated to be ~0.35 lm by comparing the measured X-ray spectra with the analytical model of synchrotron-like radiation. By combining the measured e-beam energy and divergence, the normalized transverse emittance was estimated to be as low as 56 um mrad and consistent with particle-in-cell simulations. These high-energy ultralow-emittance e beams hold great potential applications in developing free electron lasers and high-energy X-ray and gamma ray sources

    Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front

    Get PDF
    We have experimentally realized a scheme to enhance betatron radiation by manipulating transverse oscillation of electrons in a laser-driven plasma wakefield with a tilted shock front (TSF). Very brilliant betatron x-rays have been produced with significant enhancement both in photon yield and peak energy but almost maintain the e-beam energy spread and charge. Particle-in-cell simulations indicate that the accelerated electron beam (e beam) can acquire a very large transverse oscillation amplitude with an increase in more than 10-fold, after being steered into the deflected wakefield due to the refraction of the driving laser at the TSF. Spectral broadening of betatron radiation can be suppressed owing to the small variation in the peak energy of the low-energy-spread e beam in a plasma wiggler regime. It is demonstrated that the e-beam generation, refracting, and wiggling can act as a whole to realize the concurrence of monoenergetic e beams and bright x-rays in a compact laser-wakefield accelerator

    Hybrid capillary discharge waveguide for laser wakefield acceleration

    Get PDF
    A hybrid capillary discharge waveguide formed by injecting low-pressure hydrogen (< 3.8 Torr) into a pure ablative capillary is presented to supply the stable guiding for multi-GeV laser wakefield acceleration. The injected low-pressure gas only provides the seed plasma for ablative discharge breakdown, like the adsorbed gas in the inner wall of the ablative capillary. With this hybrid capillary, a stable discharge with low jitter (~ 5 ns) can be achieved in a simple way, and the plasma density inside can also be controlled in a range of ~0.7 x 1018cm-3-1.2 x 1018cm-3 within a 150-ns plasma channel temporal window. Furthermore, the hybrid capillary can also be easily extended to a longer length by adding multiple segments, and femtosecond laser pulses can be well guided both in the single and multiple segments mode. With these advantages, the hybrid capillary may provide an attractive plasma channel for multi-GeV-scale laser wakefield acceleration

    Development of an Absorbing Radio Frequency Shield for Safe Magnetic Resonance Imaging

    No full text
    In this dissertation, we propose a design for an absorbing radio frequency shield (ARFS) that helps to reduce the RF-induced heating effects at the tip of a deep brain stimulation (DBS) lead. We first review the transfer function method used to evaluate RF-induced temperature rise at a DBS lead tip, including both theory and measurements. Next, an ARFS shell is designed for a generic head-trunk human model for basic electromagnetic full-wave and thermal validations. A multi-layered ARFS shell structure is proposed, which consists of a highly conducting layer (HCL) embedded in a thick absorbing conductive layer (ACL) and an insulating layer. Furthermore, a similar ARFS shell is applied to an anatomically-correct human model with implanted DBS leads. The temperature rise at the lead tip is calculated and the shielding effectiveness of the proposed ARFS is analyzed. A total number of 297 lead-pathways are investigated. A head-only ARFS is also discussed for higher flexibility. Finally, the lead-tip temperature rise is measured inside a phantom for seven typical lead trajectories, in order to validate the methodology and the effectiveness of the proposed ARFS. The proposed ARFS structure is demonstrated to effectively reduce the temperature rise at the DBS lead tip for the trajectories studied in this dissertation. The average percentage reduction is 49.0% from the experimental results and 55.6% from the corresponding simulation results.Electrical and Computer Engineering, Department o

    The Tethered Agonist Approach to Mapping Ion-Channel Proteins: Toward a Structural Model for the Agonist-Binding Site of the Nicotinic Acetylcholine Receptor

    Get PDF
    The integral membrane proteins of neurons and other excitable cells are generally resistant to high-resolution structural tools. In this thesis we present our efforts to probe the structure of the agonist-binding site of the nicotinic acetylcholine receptor (nAChR) using the tethered agonist approach, which combines chemical synthesis, the nonsense suppression methodology for unnatural amino acid incorporation and electrophysiology. In Chapter 2, we present the results of incorporating a series of tethered quaternary ammonium derivatives of tyrosine into the nAChR using the in vivo nonsense suppression methodology for incorporating unnatural amino acids site-specifically. At three sites, a constitutively active receptor results, but the pattern of activation as a function of chain length is different. At position alpha149, there is a clear preference for a three-carbon tether, while at position alpha93 tethers of 2-5 carbons are comparably effective. At position gamma55/delta57, all tethers except the shortest one can activate the receptor. Based on these and other data, a model for the binding site of the receptor can be developed by analogy to the acetylcholine esterase crystal structure. In Chapter 3, we report evidence that the N-terminal extracellular domain of nAChR is closely related to acetylcholine binding protein (AChBP), whose crystal structure was solved in May 2001. Based on the model obtained from docking acetylcholine into the structure of AChBP, we designed and incorporated a new tethered agonist, lysyl-carbamylcholine. Incorporation of this tethered agonist at several positions produced constitutively active receptors, with significant activity seen at alpha192, alpha193, and gamma119/delta121. These results demonstrated that the loop E residue gamma119/delta121 on the complementary subunit is very near the agonist-binding site. We also investigated the role of an intersubunit hydrogen bond, which was seen in the crystal structure of AChBP. Incorporation of tryptophan analogs that abolish the hydrogen bonding abilities slowed the desensitization of the receptor, which implied that this hydrogen bond might play a key role in the allosteric transitions of desensitization. In Chapter 4, we describe our efforts to prepare a short tethered agonist and the results of incorporating it into nAChR at alpha198 by chemical modification of cysteine mutants introduced by nonsense suppression methodology. Methanethiosulphonate ethyltrimethylammonium (MTSET) modification resulted in constitutive activity, which suggested the closeness of alpha198 to the agonist-binding site. In Chapter 5, methods in molecular biology, electrophysiology and molecular docking, and the synthesis of amino acids and dinucleotide dCA-amino acids are summarized.</p
    corecore