2,992 research outputs found

    Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source. II. Numerical Modeling

    Full text link
    Numerical simulations of the helical (m ⁣= ⁣1m\!=\!1) kink instability of an arched, line-tied flux rope demonstrate that the helical deformation enforces reconnection between the legs of the rope if modes with two helical turns are dominant as a result of high initial twist in the range Φ6π\Phi\gtrsim6\pi. Such reconnection is complex, involving also the ambient field. In addition to breaking up the original rope, it can form a new, low-lying, less twisted flux rope. The new flux rope is pushed downward by the reconnection outflow, which typically forces it to break as well by reconnecting with the ambient field. The top part of the original rope, largely rooted in the sources of the ambient flux after the break-up, can fully erupt or be halted at low heights, producing a "failed eruption." The helical current sheet associated with the instability is squeezed between the approaching legs, temporarily forming a double current sheet. The leg-leg reconnection proceeds at a high rate, producing sufficiently strong electric fields that it would be able to accelerate particles. It may also form plasmoids, or plasmoid-like structures, which trap energetic particles and propagate out of the reconnection region up to the top of the erupting flux rope along the helical current sheet. The kinking of a highly twisted flux rope involving leg-leg reconnection can explain key features of an eruptive but partially occulted solar flare on 18 April 2001, which ejected a relatively compact hard X-ray and microwave source and was associated with a fast coronal mass ejection.Comment: Solar Physics, in pres

    Is Radiation of Quantized Black Holes Observable?

    Full text link
    If primordial black holes (PBH) saturate the present upper limit on the dark matter density in our Solar system and if their radiation spectrum is discrete, the sensitivity of modern detectors is close to that necessary for detecting this radiation. This conclusion is not in conflict with the upper limits on the PBH evaporation rate.Comment: 6 pages, 1 figure (reproduced properly in pdf file

    Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma

    Full text link
    We present results from the first self-consistent multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. We simulate two dimensional magnetic reconnection in a Harris current sheet with a numerical model which includes ion-neutral scattering collisions, ionization, recombination, optically thin radiative loss, collisional heating, and thermal conduction. In the resulting tearing mode reconnection the neutral and ion fluids become decoupled upstream from the reconnection site, creating an excess of ions in the reconnection region and therefore an ionization imbalance. Ion recombination in the reconnection region, combined with Alfv\'{e}nic outflows, quickly removes ions from the reconnection site, leading to a fast reconnection rate independent of Lundquist number. In addition to allowing fast reconnection, we find that these non-equilibria partial ionization effects lead to the onset of the nonlinear secondary tearing instability at lower values of the Lundquist number than has been found in fully ionized plasmas.These simulations provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.Comment: 8 Figures, 32 pages tota

    Magnetic Flux Tube Reconnection: Tunneling Versus Slingshot

    Full text link
    The discrete nature of the solar magnetic field as it emerges into the corona through the photosphere indicates that it exists as isolated flux tubes in the convection zone, and will remain as discrete flux tubes in the corona until it collides and reconnects with other coronal fields. Collisions of these flux tubes will in general be three dimensional, and will often lead to reconnection, both rearranging the magnetic field topology in fundamental ways, and releasing magnetic energy. With the goal of better understanding these dynamics, we carry out a set of numerical experiments exploring fundamental characteristics of three dimensional magnetic flux tube reconnection. We first show that reconnecting flux tubes at opposite extremes of twist behave very differently: in some configurations, low twist tubes slingshot while high twist tubes tunnel. We then discuss a theory explaining these differences: by assuming helicity conservation during the reconnection one can show that at high twist, tunneled tubes reach a lower magnetic energy state than slingshot tubes, whereas at low twist the opposite holds. We test three predictions made by this theory. 1) We find that the level of twist at which the transition from slingshot to tunnel occurs is about two to three times higher than predicted on the basis of energetics and helicity conservation alone, probably because the dynamics of the reconnection play a large role as well. 2) We find that the tunnel occurs at all flux tube collision angles predicted by the theory. 3) We find that the amount of magnetic energy a slingshot or a tunnel reconnection releases agrees reasonably well with the theory, though at the high resistivities we have to use for numerical stability, a significant amount of magnetic energy is lost to diffusion, independent of reconnection.Comment: 21 pages, 15 figures, submitted to Ap

    The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series

    Get PDF
    This paper proposes the cross-quantilogram to measure the quantile dependence between two time series. We apply it to test the hypothesis that one time series has no directional predictability to another time series. We establish the asymptotic distribution of the cross quantilogram and the corresponding test statistic. The limiting distributions depend on nuisance parameters. To construct consistent confidence intervals we employ the stationary bootstrap procedure; we show the consistency of this bootstrap. Also, we consider the self-normalized approach, which is shown to be asymptotically pivotal under the null hypothesis of no predictability. We provide simulation studies and two empirical applications. First, we use the cross-quantilogram to detect predictability from stock variance to excess stock return. Compared to existing tools used in the literature of stock return predictability, our method provides a more complete relationship between a predictor and stock return. Second, we investigate the systemic risk of individual financial institutions, such as JP Morgan Chase, Goldman Sachs and AIG. This article has supplementary materials online

    Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems

    Get PDF
    We provide an asymptotic distribution theory for a class of Generalized Method of Moments estimators that arise in the study of differentiated product markets when the number of observations is associated with the number of products within a given market. We allow for three sources of error: the sampling error in estimating market shares, the simulation error in approximating the shares predicted by the model, and the underlying model error. The limiting distribution of the parameter estimator is normal provided the size of the consumer sample and the number of simulation draws grow at a large enough rate relative to the number of products. We specialise our distribution theory to the Berry, Levinsohn, and Pakes (1995) random coefficient logit model and a pure characteristic model. The required rates differ for these two frequently used demand models. A small Monte Carlo study shows that the difference in asymptotic properties of the two models are reflected in the models’ small sample properties. These differences impact directly on the computational burden of the two models
    corecore