74 research outputs found
Uncovering hidden genetic variations: long-read sequencing reveals new insights into tuberous sclerosis complex
BackgroundTuberous sclerosis is a multi-system disorder caused by mutations in either TSC1 or TSC2. The majority of affected patients (85%–90%) have heterozygous variants, and a smaller number (around 5%) have mosaic variants. Despite using various techniques, some patients still have “no mutation identified” (NMI).MethodsWe hypothesized that the causal variants of patients with NMI may be structural variants or deep intronic variants. To investigate this, we sequenced the DNA of 26 tuberous sclerosis patients with NMI using targeted long-read sequencing.ResultsWe identified likely pathogenic/pathogenic variants in 13 of the cases, of which 6 were large deletions, four were InDels, two were deep intronic variants, one had retrotransposon insertion in either TSC1 or TSC2, and one was complex rearrangement. Furthermore, there was a de novo Alu element insertion with a high suspicion of pathogenicity that was classified as a variant of unknown significance.ConclusionOur findings expand the current knowledge of known pathogenic variants related to tuberous sclerosis, particularly uncovering mosaic complex structural variations and retrotransposon insertions that have not been previously reported in tuberous sclerosis. Our findings suggest a higher prevalence of mosaicism among tuberous sclerosis patients than previously recognized. Our results indicate that long-read sequencing is a valuable approach for tuberous sclerosis cases with no mutation identified (NMI)
Blastocyst quality and reproductive and perinatal outcomes : a multinational multicentre observational study
Funding H.Z. is supported by a Monash Research Scholarship. B.W.J.M. is supported by an NHMRC Investigator grant (GNT1176437). R.W. is supported by an NHMRC Emerging Leadership Investigator grant (2009767).Peer reviewedPublisher PD
ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy
揭示了在外界能量供应缺乏时,细胞通过激活ULK1来介导葡萄糖分解代谢重编程以维持胞内的能量与氧化还原稳态的详细机制,并创新地发现了ULK1独立于自噬的关键功能。基于自噬和糖代谢与人类健康的重要相关性,该研究将很可能为我们预防和治疗各类代谢疾病提供新的思路和药物靶点。Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.State Key Program of National Natural Science of China, the 973 Program;National Natural Science Foundation of China for Fostering Talents in Basic Research ;the Foundation for Innovative Research Groups of the National Natural Science Foundation of China; and the 111 Project of Education of China
AIDA通过内质网相关的蛋白质降解途径选择性下调脂肪合成途径的代谢酶从而减缓肠道脂肪吸收并防止肥胖发生
文章简介肠道对膳食脂肪吸收的效率是个人是否易患肥胖的主要决定因素之一。然而,目前人们还不清楚脂肪吸收是如何受调控并导致肥胖的。本研究表明,抑制内质网相关的蛋白质降解途径会提高甘油三酯合成途径的数个代谢酶的水平,并促进小肠对脂肪的吸收。包含C2结构域的蛋白AIDA作为一个重要国家重点基础研发计划;;\n国家自然科学基金;;\n厦门大学校长基金等支
Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy
Src基因是哺乳动物中发现的第一个原癌基因,其编码的蛋白是一个酪氨酸激酶,在促进乳腺癌、肺癌等诸多肿瘤的发生、进展和恶化中起着重要的作用。在研究中,研究团队发现Src能够承接生长因子和肥胖微环境相关的因子如胰岛素和瘦素的信号,通过直接磷酸化lipin-1,增强其催化合成甘油脂的活性,提高细胞摄入的脂肪酸向甘油脂尤其是磷脂转化。进一步实验表明,Src磷酸化lipin-1能够加速乳腺癌细胞生长,促进小鼠模型中肿瘤的进展和转移。这项研究不但做出了对脂肪合成途径的调控机制的又一重要发现,还揭示了原癌基因Src可以承接癌细胞内外的活化信号,通过lipin-1为媒介重塑癌细胞脂代谢,使得肿瘤细胞具有增殖和转移的优势。该论文揭示了臭名昭著的原癌基因Src通过直接结合并磷酸化lipin-1(一种磷脂酸磷酸化酶,在脂质代谢中具有重要作用),以增强其酶活性,从而加速甘油酯的合成速率,进而促进乳腺癌的发生发展。
该研究由厦门大学生命科学学院、广州医科大学第五附属医院、第四军医大学西京医院和中山大学孙逸仙纪念医院等单位合作完成,厦门大学生命科学学院博士后宋林涛和广州医科大学第五附属医院刘志华教授为该论文的共同第一作者。【Abstract】Increased lipogenesis has been linked to an increased cancer risk and poor prognosis; however, the underlying mechanisms remain obscure. Here we show that phosphatidic acid phosphatase (PAP) lipin-1, which generates diglyceride precursors necessary for the synthesis of glycerolipids, interacts with and is a direct substrate of the Src proto-oncogenic tyrosine kinase. Obesity-associated microenvironmental factors and other Src-activating growth factors, including the epidermal growth factor, activate Src and promote Src-mediated lipin-1 phosphorylation on Tyr398, Tyr413 and Tyr795 residues. The tyrosine phosphorylation of lipin-1 markedly increases its PAP activity, accelerating the synthesis of glycerophospholipids and triglyceride. Alteration of the three tyrosine residues to phenylalanine (3YF-lipin-1) disables lipin-1 from mediating Src-enhanced glycerolipid synthesis, cell proliferation and xenograft growth. Re-expression of 3YF-lipin-1 in PyVT;Lpin1−/− mice fails to promote progression and metastasis of mammary tumours. Human breast tumours exhibit increased p-Tyr-lipin-1 levels compared to the adjacent tissues. Importantly, statistical analyses show that levels of p-Tyr-lipin-1 correlate with tumour sizes, lymph node metastasis, time to recurrence and survival of the patients. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic Src, providing a mechanistic link between obesity-associated mitogenic signaling and breast cancer malignancy.This work was supported by grants from the National Natural Science Foundation of China (#31822027, #31690101, #91854208, #31871168, #82002965), the Fundamental Research Funds for the Central Universities (#20720190084), Project “111” sponsored by the State Bureau of Foreign Experts and Ministry of Education of China (#BP2018017), XMU Training Programme of Innovation and Entrepreneurship for Undergraduates (#2017Y0578, #2018Y1281) and China Postdoctoral Science Foundation (#2019M652254).
该研究也得到了国家自然科学基金,中央高校基础研究项目和中国博士后科学基金等的资助
AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1
AIDA最早是由林圣彩教授团队首先鉴定和命名的。2007年林圣彩教授团队与孟安明院士团队合作发现AIDA在斑马鱼体轴发育中的功能(Rui, 2007)。2018年,林圣彩教授团队首次发现了AIDA在哺乳动物中的功能,即AIDA介导的内质网降解途径通过降解脂肪合成途径中的关键酶,而限制膳食脂肪在肠道的吸收这一内在抵御肥胖(Luo, 2018)。而本次成果揭示了AIDA在棕色脂肪组织中特定的功能。这些工作将AIDA引入了脂质应激代谢的重要环节,包括脂质吸收和依赖于脂质的产热过程。该论文的共同第一作者为生命科学学院博士生史猛和硕士生黄晓羽,林圣彩教授和林舒勇教授则为共同通讯作者。【Abstract】The sympathetic nervous system–catecholamine–uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1.Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice.The PKA–AIDA–UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.We thank Y. Li, E. Gnaiger, T. Kuwaki, J. R. B. Lighton, E. T. Chouchani and D. Jiang for technical instruction; X. Li and X.-D. Jiang (Core Facility of Biomedical, Xiamen University) for raising the p-S161-AIDA antibody; the Xiamen University Laboratory Animal Center for the mouse in vitro fertilization service and all the other members of S.C.L. laboratory for their technical assistance. This work was supported by grants from the National Key Research and Development Project of China (grant no. 2016YFA0502001) and the National Natural Science Foundation of China (grant nos 31822027, 31871168, 31690101, 91854208 and 82088102), the Fundamental Research Funds for the Central Universities (grant nos 20720190084 and 20720200069), Project ‘111’ sponsored by the State Bureau of Foreign Experts and Ministry of Education of China (grant no. BP2018017), the Youth Innovation Fund of Xiamen (grant no. 3502Z20206028), the Natural Science Foundation of Fujian Province of China (grant no. 2017J01364) and XMU Training Program of Innovation and Entrepreneurship for Undergraduates (grant no. 2019×0666).
该工作得到了厦门大学实验动物中心和生物医学学部仪器平台的重要协助和国家重点研究和发展项目,国家自然科学基金,厦门大学校长基金等的支持
T lymphocytes maintain structure and function of fibroblastic reticular cells via lymphotoxin (LT)-B
BRCA2 mutation in advanced lung squamous cell carcinoma treated with Olaparib and a PD-1 inhibitor: a case report
BackgroundMutations in the human breast cancer susceptibility gene 2 (breast cancer 2, BRCA2) increase the risk of breast, ovarian and other cancers. Olaparib, an oral poly[adenosine diphosphate (ADP)–ribose] polymerase (PARP) inhibitor, is usually prescribed to treat BRCA mutated tumors, especially breast and ovarian cancers. Programmed cell death-1 (PD-1) inhibitors have revolutionized the treatment of lung cancer and many other cancers by destroying the interaction between receptors with ligands in the tumor-immune microenvironment and enabling T cells to recognize and attack cancer cells.Case descriptionIn our study, we report a patient with advanced BRCA2 lung squamous cell carcinoma who received platinum-based chemotherapy combined with paclitaxel. Seven months later, the disease progressed. BRCA2 mutations were detected in peripheral blood by next-generation sequencing. After 2 months of treatment with Olaparib combined with Cindilimab, the patient was in partial remission and the progression-free survival (PFS) lasted for 6 months, but the patient developed immune renal damage.ConclusionsThis study adds to the clinical data for the treatment of BRCA2 mutant non-small cell lung cancer by demonstrating that lung squamous cell carcinoma has a good response to PARP inhibitors. It also serves as a reminder that there may still be some negative effects from targeted superimposed immunotherapy
- …