76 research outputs found

    A microcomputer system for the analysis of dental radiographs

    No full text

    Level set segmentation of the fetal heart

    No full text
    Segmentation of the fetal heart can facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. This paper presents a level set deformable model to simultaneously segment all four cardiac chambers using region based information. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 7 pixels (<2mm) in 2D and under 3 voxels (<4.5mm) in 3D. The ejection fraction was determined from the 3D dataset. Future work will include further testing on additional datasets and validation on a phantom. © Springer-Verlag Berlin Heidelberg 2005

    Level set segmentation of the fetal heart

    No full text
    Segmentation of the fetal heart can facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. This paper presents a level set deformable model to simultaneously segment all four cardiac chambers using region based information. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 7 pixels (<2mm) in 2D and under 3 voxels (<4.5mm) in 3D. The ejection fraction was determined from the 3D dataset. Future work will include further testing on additional datasets and validation on a phantom. © Springer-Verlag Berlin Heidelberg 2005.</p

    Level set segmentation of the fetal heart

    No full text
    Segmentation of the fetal heart can facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. This paper presents a level set deformable model to simultaneously segment all four cardiac chambers using region based information. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 7 pixels (<2mm) in 2D and under 3 voxels (<4.5mm) in 3D. The ejection fraction was determined from the 3D dataset. Future work will include further testing on additional datasets and validation on a phantom. © Springer-Verlag Berlin Heidelberg 2005.</p
    corecore