4 research outputs found

    Plant organellar RNA maturation

    Get PDF
    Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery—and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.Peer Reviewe

    Feasibility of a new hollow fiber silicone membrane oxygenator for long-term ECMO application

    Get PDF
    Currently in United States, there are no clinically-applicable hollow fiber extracorporeal membrane oxygenation (ECMO) oxygenators available. Therefore, our laboratory is in the process of developing a silicone hollow fiber membrane oxygenator for long-term ECMO usage. This oxygenator incorporates an ultrathin silicone hollow fiber. At this time, a specially-modified blood flow distributor (one chamber distributor) is centered in the module to prevent blood stagnation. An ex vivo long-term durability test for ECMO was performed using a healthy miniature calf for 2 weeks. Venous blood was drained from the left jugular vein of a calf, passed through the oxygenator and infused into the left carotid artery using a Gyro C1E3 centrifugal blood pump. A successful 2-week ex vivo experiment was performed. The O2 and CO2 gas transfer rates were maintained at the same value of 40 ml/min at a blood flow rate of 1 L/min flow and V/Q=3 (V=gas flow rate Q=blood flow rate). The plasma free hemoglobin was maintained around 5 mg/dl. After the experiment, no blood clot formation was observed in the module and no abnormal necropsy findings were found. These data suggest that the performance of this newly-improved oxygenator was stable, reliable, and acceptable for long-term ECMO

    Acclimation in plants – the Green Hub consortium

    Get PDF
    Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to ‘smart breeding’ methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast‐related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe
    corecore