264 research outputs found

    Combined Ensemble Docking and Machine Learning in Identification of Therapeutic Agents with Potential Inhibitory Effect on Human CES1

    Get PDF
    The human carboxylesterase 1 (CES1), responsible for the biotransformation of many diverse therapeutic agents, may contribute to the occurrence of adverse drug reactions and therapeutic failure through drug interactions. The present study is designed to address the issue of potential drug interactions resulting from the inhibition of CES1. Based on an ensemble of 10 crystal structures complexed with different ligands and a set of 294 known CES1 ligands, we used docking (Autodock Vina) and machine learning methodologies (LDA, QDA and multilayer perceptron), considering the different energy terms from the scoring function to assess the best combination to enable the identification of CES1 inhibitors. The protocol was then applied on a library of 1114 FDA-approved drugs and eight drugs were selected for in vitro CES1 inhibition. An inhibition effect was observed for diltiazem (IC50 = 13.9 µM). Three others drugs (benztropine, iloprost and treprostinil), exhibited a weak CES1 inhibitory effects with IC50 values of 298.2 µM, 366.8 µM and 391.6 µM respectively. In conclusion, the binding site of CES1 is relatively flexible and can adapt its conformation to different types of ligands. Combining ensemble docking and machine learning approaches improves the prediction of CES1 inhibitors compared to a docking study using only one crystal structure

    Scalable Analysis of Untargeted LC-HRMS Data by Means of SQL Database Archiving

    Get PDF
    Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is widely used to detect chemicals with a broad range of physiochemical properties in complex biological samples. However, the current data analysis strategies are not sufficiently scalable because of data complexity and amplitude. In this article, we report a novel data analysis strategy for HRMS data founded on structured query language database archiving. A database called ScreenDB was populated with parsed untargeted LC-HRMS data after peak deconvolution from forensic drug screening data. The data were acquired using the same analytical method over 8 years. ScreenDB currently holds data from around 40,000 data files, including forensic cases and quality control samples that can be readily sliced and diced across data layers. Long-term monitoring of system performance, retrospective data analysis for new targets, and identification of alternative analytical targets for poorly ionized analytes are examples of ScreenDB applications. These examples demonstrate that ScreenDB makes a significant improvement to forensic services and that the concept has potential for broad applications for all large-scale biomonitoring projects that rely on untargeted LC-HRMS data

    Analytical Profiling of Airplane Wastewater - a New Matrix for Mapping Worldwide Patterns of Drug Use and Abuse

    Get PDF
    Abstract There is limited knowledge on the global prescription and consumption patterns of therapeutic (TD) and illicit drugs (ID). Pooled urine analysis and wastewater-based epidemiology (WBE) has been used for local-based drug screening. It is, however, difficult to study the global epidemiology due to difficulties in obtaining samples. The aims of the study were to test the detectability of TD and ID in airplane wastewater samples categorized according to their geographical origin. Wastewater samples (n= 17) were collected from long-distance flights and prepared with enzymatic conjugate cleaving followed by either precipitation or solid phase extraction. Aliquots were analysed on various liquid chromatography – mass spectrometers. TDs were grouped according to their Anatomical Therapeutic Chemical (ATC) codes. Identification confidence was assigned to three levels based on variables including detection on multiple instruments and number of targets per compound. A total of 424 compounds were identified across all samples, distributed on 87 unique TD and 2 ID. Two principal components in a principal component analysis separated three clusters of wastewater samples corresponding to geographical origin of the airplanes with therapeutic subgroup ATC codes as variables. Airplane wastewater analysis is useful for identifying targets for WBE and toxicological analysis and explore drug use and abuse patterns.</jats:p
    corecore