17 research outputs found

    Extracellular Matrix Proteins and Tumor Angiogenesis

    Get PDF
    Tumor development is a complex process that relies on interaction and communication between a number of cellular compartments. Much of the mass of a solid tumor is comprised of the stroma which is richly invested with extracellular matrix. Within this matrix are a host of matricellular proteins that regulate the expression and function of a myriad of proteins that regulate tumorigenic processes. One of the processes that is vital to tumor growth and progression is angiogenesis, or the formation of new blood vessels from preexisting vasculature. Within the extracellular matrix are structural proteins, a host of proteases, and resident pro- and antiangiogenic factors that control tumor angiogenesis in a tightly regulated fashion. This paper discusses the role that the extracellular matrix and ECM proteins play in the regulation of tumor angiogenesis

    Jaagsiekte Sheep Retrovirus and Enzootic Nasal Tumor Virus Promoters Drive Gene Expression in All Airway Epithelial Cells of Mice but Only Induce Tumors in the Alveolar Region of the Lungs▿†

    No full text
    Jaagsiekte sheep retrovirus (JSRV) induces tumors in the distal airways of sheep and goats, while the closely related enzootic nasal tumor virus type 1 (ENTV-1) and ENTV-2 induce tumors in the nasal epithelium of sheep and goats, respectively. When expressed using a strong Rous sarcoma virus promoter, the envelope proteins of these viruses induce tumors in the respiratory tract of mice, but only in the distal airway. To examine the role of the retroviral long terminal repeat (LTR) promoters in determining tissue tropism, adeno-associated virus (AAV) vectors expressing alkaline phosphatase under the control of the JSRV, ENTV-1, or ENTV-2 LTRs were generated and administered to mice. The JSRV LTR was active in all airway epithelial cells, while the ENTV LTRs were active in the nasal epithelium and alveolar type II cells but poorly active in tracheal and bronchial epithelial cells. When vectors were administered systemically, the ENTV-1 and -2 LTRs were inactive in major organs examined, whereas the JSRV showed high-level activity in the liver. When a putative transcriptional enhancer from the 3′ end of the env gene was inserted upstream of the JSRV and ENTV-1 LTRs in the AAV vectors, a dramatic increase in transgene expression was observed. However, intranasal administration of AAV vectors containing any combination of ENTV or JSRV LTRs and Env proteins induced tumors only in the lower airway. Our results indicate that mice do not provide an adequate model for nasal tumor induction by ENTV despite our ability to express genes in the nasal epithelium

    Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation

    Get PDF
    This study was designed to evaluate MEK5 and ERK5 expression in colon cancer progression and to ascertain the relevance of MEK5/ERK5 signalling in colon cancer. Expression of MEK5 and ERK5 was evaluated in 323 human colon cancer samples. To evaluate the role of MEK5/ERK5 signalling in colon cancer, we developed a stable cell line model with differential MEK5/ERK5 activation. Impact of differential MEK5/ERK5 signalling was evaluated on cell cycle progression by flow cytometry and cell migration was evaluated by wound healing and transwell migration assays. Finally, we used an orthotopic xenograft mouse model of colon cancer to assess tumour growth and progression. Our results demonstrated that MEK5 and ERK5 are overexpressed in human adenomas (P<0.01) and adenocarcinomas (P<0.05), where increased ERK5 expression correlated with the acquisition of more invasive and metastatic potential (P<0.05). Interestingly, we observed a significant correlation between ERK5 expression and NF-κB activation in human adenocarcinomas (P<0.001). We also showed that ERK5 overactivation significantly accelerated cell cycle progression (P<0.05) and increased cell migration (P<0.01). Furthermore, cells with overactivated ERK5 displayed increased NF-κB nuclear translocation and transcriptional activity (P<0.05), together with increased expression of the mesenchymal marker vimentin (P<0.05). We further demonstrated that increased NF-κB activation was associated with increased IκB phosphorylation and degradation (P<0.05). Finally, in the mouse model, lymph node metastasis was exclusively seen in orthotopically implanted tumours with overactivated MEK5/ERK5, and not in tumours with inhibited MEK5/ERK5. Our results suggested that MEK5/ERK5/NF-κB signalling pathway is important for tumour onset, progression and metastasis, possibly representing a novel relevant therapeutic target in colon cancer treatment

    Inhibition of Ras-mediated signaling pathways in CML stem cells

    No full text
    Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the presence of the BCR-ABL1 oncoprotein in cells with a hematopoietic stem cell (HSC) origin. BCR-ABL1 tyrosine kinase activity leads to constitutive activation of Ras, which in turn acts as a branch point to initiate multiple downstream signaling pathways governing proliferation, self-renewal, differentiation and apoptosis. As aberrant regulation of these cellular processes causes transformation and disease progression particularly in advanced stages of CML, investigation of these signaling pathways may uncover new therapeutic targets for the selective eradication of CML stem cells. Transcription factors play a crucial role in unbalancing the Ras signaling network and have recently been investigated as potential modulators in this regard. In this review, we first briefly summarize the Ras-associated molecular pathways that are involved in the regulation of CML stem cell properties. Next we discuss the relevance of Ras-associated transcription factors as nuclear targets in combination treatment strategies for CML
    corecore