120 research outputs found

    Mitochondrial Damage in the Trabecular Meshwork Occurs Only in Primary Open-Angle Glaucoma and in Pseudoexfoliative Glaucoma

    Get PDF
    Open-angle glaucoma appears to be induced by the malfunction of the trabecular meshwork cells due to injury induced by oxidative damage and mitochondrial impairment. Here, we report that, in fact, we have detected mitochondrial damage only in primary open-angle glaucoma and pseudo-exfoliation glaucoma, among several glaucoma types compared.Mitochondrial damage was evaluated by analyzing the common mitochondrial DNA deletion by real-time PCR in trabecular meshwork specimens collected at surgery from glaucomatous patients and controls. Glaucomatous patients included 38 patients affected by various glaucoma types: primary open-angle, pigmented, juvenile, congenital, pseudoexfoliative, acute, neovascular, and chronic closed-angle glaucoma. As control samples, we used 16 specimens collected from glaucoma-free corneal donors. Only primary open-angle glaucoma (3.0-fold) and pseudoexfoliative glaucoma (6.3-fold) showed significant increases in the amount of mitochondrial DNA deletion. In all other cases, deletion was similar to controls.despite the fact that the trabecular meshwork is the most important tissue in the physiopathology of aqueous humor outflow in all glaucoma types, the present study provides new information regarding basic physiopathology of this tissue: only in primary open-angle and pseudoexfoliative glaucomas oxidative damage arising from mitochondrial failure play a role in the functional decay of trabecular meshwork

    Mitochondrial Changes in Ageing Caenorhabditis elegans – What Do We Learn from Superoxide Dismutase Knockouts?

    Get PDF
    One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the “vicious cycle” theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the “vicious cycle” theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the “vicious cycle” theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed

    Mitochondrial function as a determinant of life span

    Get PDF
    Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion

    Endocellular regulation by free radicals and hydrogen peroxide: key determinants of the inflammatory response

    No full text
    The formations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been considered as major contributors to the dysregulation of the inflammatory response. Reactive oxygen species and RNS productions often are reported to be associated with the development of chronic diseases and acceleration of the aging process. Mechanistically, this association has linked the phenomena of oxidative stress with the occurrence of random deleterious modifications of macromolecules with progressive development of pro-inflammatory conditions promoting age-associated systemic diseases. On the contrary the so-called random modification of macromolecules is incorrect rather ROS and RNS are molecular regulators (second messengers) and not universal toxins whose overproduction should be annulled by antioxidants. We have previously reviewed the physiological role of superoxide anion (and hydrogen peroxide) and nitric oxide (and peroxynitrite) and concluded that these reactive molecular species behave as pro-oxidant second messengers. Reactive oxygen species and RNS are produced at specific cellular locations and are essential for both the normal physiological function of the metabolome and the regulated inflammatory response. This brings into question the whole concept of the orally administering of antioxidant molecular species to down-regulate or abrogate an overproduction of free radical activity. There are no human clinical trials that demonstrate that small molecules, the so-called antioxidants (e.g., vitamins C, vitamin E and beta-carotene), confer a favorable clinical outcome of long-lasting control of inflammation

    Statins, lack of energy and ubiquinone

    No full text

    A randomised, placebo-controlled trial assessing the efficacy of an oral B group vitamin in preventing the development of chemotherapy-induced peripheral neuropathy (CIPN)

    Full text link
    © 2016, Springer-Verlag Berlin Heidelberg. Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect resulting from neurotoxic chemotherapeutic agents. This study aimed to assess the efficacy and safety of an oral B group vitamin compared to placebo, in preventing the incidence of CIPN in cancer patients undergoing neurotoxic chemotherapy. Methods: A pilot, randomised, placebo-controlled trial was conducted. Newly diagnosed cancer patients prescribed with taxanes, oxaliplatin or vincristine were invited to participate. A total of 71 participants (female 68 %, male 32 %) were enrolled into the study and randomised to the B group vitamin (n = 38) arm or placebo (n = 33). The data from 47 participants were eligible for analysis (B group vitamins n = 27, placebo n = 22). The primary outcome measure was the total neuropathy score assessed by an independent neurologist. Secondary outcome measures included serum vitamin B levels, quality of life, pain inventory and the patient neurotoxicity questionnaires. Outcome measures were conducted at baseline, 12, 24 and 36 weeks. Results: The total neuropathy score (TNS) demonstrated that a B group vitamin did not significantly reduce the incidence of CIPN compared to placebo (p = 0.73). Statistical significance was achieved for patient perceived sensory peripheral neuropathy (12 weeks p = 0.03; 24 weeks p = 0.005; 36 weeks p = 0.021). The risk estimate for the Patient Neurotoxicity Questionnaire (PNQ) was also statistically significant (OR = 5.78, 95 % CI = 1.63–20.5). The European Organisation of Research and Treatment of Cancer (EORTC) quality of life, total pain score and pain interference showed no significance (p = 0.46, p = 0.9, p = 0.37 respectively). A trend was observed indicating that vitamin B12 may reduce the onset and severity of CIPN. Conclusion: An oral B group vitamin as an adjunct to neurotoxic chemotherapy regimens was not superior to placebo (p > 0.05) for the prevention of CIPN. Patients taking the B group vitamin perceived a reduction in sensory peripheral neuropathy in the PNQ. Moreover, a robust clinical study is warranted given that vitamin B12 may show potential in reducing the onset and severity of CIPN. Trial number: ACTRN12611000078954 Protocol number: UH201000074
    corecore