3 research outputs found

    Data_Sheet_1_Comparative efficacy of different repetitive transcranial magnetic stimulation protocols for lower extremity motor function in stroke patients: a network meta-analysis.docx

    No full text
    BackgroundLower extremity motor dysfunction is one of the most severe consequences after stroke, restricting functional mobility and impairing daily activities. Growing evidence suggests that repetitive transcranial magnetic stimulation (rTMS) can improve stroke patients’ lower extremity motor function. However, there is still controversy about the optimal rTMS protocol. Therefore, we compared and analyzed the effects of different rTMS protocols on lower extremity motor function in stroke patients using network meta-analysis (NMA).MethodsWe systematically searched CNKI, WanFang, VIP, CBM, PubMed, Embase, Web of Science, and Cochrane Library databases (from origin to 31 December 2023). Randomized controlled trials (RCTs) or crossover RCTs on rTMS improving lower extremity motor function in stroke patients were included. Two authors independently completed article screening, data extraction, and quality assessment. RevMan (version 5.4) and Stata (version 17.0) were used to analyze the data.ResultsA total of 38 studies with 2,022 patients were eligible for the NMA. The interventions included HFrTMS-M1, LFrTMS-M1, iTBS-Cerebellum, iTBS-M1, dTMS-M1, and Placebo. The results of NMA showed that LFrTMS-M1 ranked first in FMA-LE and speed, and HFrTMS-M1 ranked first in BBS, TUGT, and MEP amplitude. The subgroup analysis of FMA-LE showed that HFrTMS-M1 was the best stimulation protocol for post-stroke time > 1 month, and LFrTMS-M1 was the best stimulation protocol for post-stroke time ≤ 1 month.ConclusionConsidering the impact of the stroke phase on the lower extremity motor function, the current research evidence shows that HFrTMS-M1 may be the preferred stimulation protocol to improve the lower extremity motor function of patients for post-stroke time > 1 month, and LFrTMS-M1 for post-stroke time ≤ 1 month. However, the above conclusion needs further analysis and validation by more high-quality RCTs.Systematic Review Registration:www.crd.york.ac.uk/prospero/, identifier (CRD42023474215).</p

    Enhancing Photoinduced Charge Separation through Donor Moiety in Donor–Acceptor Organic Semiconductors

    No full text
    Three systems were designed, synthesized, and characterized to understand decay processes of photoinduced charge separation in organic semiconductors that are imperative for efficient solar energy conversion. A styrene-based indoline derivative (YD) was used as donor moiety (D), a triazine derivative (TRC) as the first acceptor (A<sub>1</sub>), and 9,10-anthraquinone (AEAQ) as a second acceptor (A<sub>2</sub>) in constructing two systems, YD-TRC and YD-TRC-AEAQ. The lifetime of the photoinduced charge-separated states in YD-TRC, a D–A<sub>1</sub> system, was found to be 215 ns and that in YD-TRC-AEAQ, a D–A<sub>1</sub>–A<sub>2</sub> system, to be 1.14 μs, a 5-fold increase with respect to that of the YD-TRC. These results show that YD is a more effective donor in YD-TRC and YD-TRC-AEAQ systems at forming long-lived charge-separated states compared to a previously reported atriphenylamine derivative (MTPA) that generated charge-separated states with a lifetime of 80 ns in MTPA-TRC and 650 ns in MTPA-TRC-AEAQ. The third system was constructed using a metal-free porphyrin derivative (MHTPP) to form a MHTPP-TRC-AEAQ structure, a D–L (linker)–A system with a charge separation lifetime less than 10 ns. Therefore, the D–A<sub>1</sub>–A<sub>2</sub> architecture is the best at generating long-lived charge-separated states and thus is a promising design strategy for organic photovoltaics materials

    Enhancing Photoinduced Charge Separation through Donor Moiety in Donor–Acceptor Organic Semiconductors

    No full text
    Three systems were designed, synthesized, and characterized to understand decay processes of photoinduced charge separation in organic semiconductors that are imperative for efficient solar energy conversion. A styrene-based indoline derivative (YD) was used as donor moiety (D), a triazine derivative (TRC) as the first acceptor (A<sub>1</sub>), and 9,10-anthraquinone (AEAQ) as a second acceptor (A<sub>2</sub>) in constructing two systems, YD-TRC and YD-TRC-AEAQ. The lifetime of the photoinduced charge-separated states in YD-TRC, a D–A<sub>1</sub> system, was found to be 215 ns and that in YD-TRC-AEAQ, a D–A<sub>1</sub>–A<sub>2</sub> system, to be 1.14 μs, a 5-fold increase with respect to that of the YD-TRC. These results show that YD is a more effective donor in YD-TRC and YD-TRC-AEAQ systems at forming long-lived charge-separated states compared to a previously reported atriphenylamine derivative (MTPA) that generated charge-separated states with a lifetime of 80 ns in MTPA-TRC and 650 ns in MTPA-TRC-AEAQ. The third system was constructed using a metal-free porphyrin derivative (MHTPP) to form a MHTPP-TRC-AEAQ structure, a D–L (linker)–A system with a charge separation lifetime less than 10 ns. Therefore, the D–A<sub>1</sub>–A<sub>2</sub> architecture is the best at generating long-lived charge-separated states and thus is a promising design strategy for organic photovoltaics materials
    corecore