20 research outputs found

    Understanding Trends in Molecular Bond Angles

    Get PDF
    Trends in bond angle are identified in a systematic study of more than a thousand symmetric A(2)B triatomic molecules. We show that, in series where atoms A and B are each varied within a group, the following trends hold: (1) the A-B-A bond angle decreases for more polarizable central atoms B, and (2) the A-B-A angle increases for more polarizable outer atoms A. The physical underpinning is provided by the extended Debye polarizability model for the chemical bond angle, hence our present findings also serve as validation of this simple classical model. We use experimental bond angles from the literature and, where not available, we optimize molecular geometries with quantum chemical methods, with an open mind with regards to the stability of these molecules. We consider main group elements up to and including the sixth period of the periodic table

    Revisiting the origin of the bending in group 2 metallocenes AeCp2 (Ae = Be–Ba)

    Get PDF
    Metallocenes are well-established compounds in organometallic chemistry, and can exhibit either a coplanar structure or a bent structure according to the nature of the metal center (E) and the cyclopentadienyl ligands (Cp). Herein, we re-examine the chemical bonding to underline the origins of the geometry and stability observed experimentally. To this end, we have analysed a series of group 2 metallocenes [Ae(C5R5)2] (Ae = Be–Ba and R = H, Me, F, Cl, Br, and I) with a combination of computational methods, namely energy decomposition analysis (EDA), polarizability model (PM), and dispersion interaction densities (DIDs). Although the metal–ligand bonding nature is mainly an electrostatic interaction (65–78%), the covalent character is not negligible (33–22%). Notably, the heavier the metal center, the stronger the d-orbital interaction with a 50% contribution to the total covalent interaction. The dispersion interaction between the Cp ligands counts only for 1% of the interaction. Despite that orbital contributions become stronger for heavier metals, they never represent the energy main term. Instead, given the electrostatic nature of the metallocene bonds, we propose a model based on polarizability, which faithfully predicts the bending angle. Although dispersion interactions have a fair contribution to strengthen the bending angle, the polarizability plays a major role

    Comparison of ab initio molecular properties of EDO-TTF with the properties of the (EDO-TTF)2PF6 crystal

    No full text
    We performed ab initio quantum chemical calculations for the geometrical and electronic structure of the EDO-TTF (ethylenedioxy-tetrathiafulvalene) molecule using HF, CASSCF and DFT methods. We compare these in vacuo results with the properties of the (EDO-TTF)2PF6 crystal at near room temperature. We demonstrate that, by bending and charging the molecule in vacuum, the deformation that is thought to be the origin of charge ordering in this material is an inherent property of the EDO-TTF molecule. We further show that deformations can be readily made at ambient temperatures.

    Off-Planar Geometry and Structural Instability of EDO-TTF Explained by Using the Extended Debye Polarizability Model for Bond Angles

    No full text
    The geometry of ethylenedioxy-tetrathiafulvalene, EDO-TTF, plays an important role in the metal−insulator transition in the charge transfer salt (EDO-TTF)2PF6. The planar and off-planar geometrical conformations of the EDO-TTF molecules are explained using an extended Debye polarizability model for the bond angle. The geometrical structure of EDO-TTF is dictated by its four sulfur bond angles and these are, in turn, determined by the polarizability of the sulfur atoms. With Hartree−Fock and second-order Møller−Plesset perturbation theory calculations on EDO-TTF, TTF, H2S, and their oxygen and selenium substituted counterparts we confirm this hypothesis. The Debye polarizability model for bond angles relates directly the optimum bond angle with the polarizability of the center atom. Considering the (EDO-TTF)2PF6 material in this light proves to be very fruitful.

    Theoretical study of the ground state of (EDO-TTF)(2)PF6

    Get PDF
    In this paper we present a theoretical study of the nature of the ground state of the (EDO-TTF)(2)PF6 charge transfer salt by using ab initio quantum chemical theory for clusters in vacuum, for embedded clusters and for the periodic system. Exemplary for other organic charge transfer systems, we show that by using a relatively low level of theory it is possible to obtain a good understanding of the electronic structure of the ground state. An assessment is made of the proximity of the triplet, the open shell singlet and the closed shell singlet states of (EDO-TTF)(2)PF6. Our calculations reveal also that several charge ordered states are very close in energy. (C) 2015 Elsevier B.V. All rights reserved

    The thermal metal-insulator phase transition in (EDO-TTF)(2)PF6

    Get PDF
    The thermal metal-insulator phase transition in the -stacked (EDO-TTF)(2)PF6 charge transfer salt is of the Peierls type. It is related to geometrical reorganisations and charge ordering phenomena. We report that dimerising displacements are involved in the mechanism of this transition. By using periodic quantum chemical calculations, we find a double well potential in which dimerisation and charge localisation become manifest. By analysing the nuclear wavefunctions we discuss the mechanism of the phase transition in terms of thermal fluctuations. [GRAPHICS]

    Periodic Hartree-Fock and hybrid density functional calculations on the metallic and the insulating phase of (EDO-TTF)(2)PF6

    Get PDF
    The insulating and conducting phases of (EDO-TTF)(2)PF6 were studied by all electron, periodic Hartre-Fock and hybrid density functional calculations. Electronic properties, such as the electronic band structure, the density of states and the Fermi surface are discussed in relation to the metal-insulator transition in this material. The nature of conduction is confirmed in both phases from their band structures and density of states. The hybrid DFT band gaps are in good agreement with experiment. Interactions are discussed on the basis of band dispersion in the inter-stack, intra-stack and inter-sheet directions. We discuss the phase transition in terms of the Peierls mechanism and our results fully support this view
    corecore