13 research outputs found

    The effect of thickness and elastic modulus of the anterior talofibular ligament on anterior ankle joint stiffness: A subject-specific finite element study

    Get PDF
    Ankle sprain is a frequent type of sports injury leading to lateral ligament injury. The anterior talofibular ligament (ATFL) is a primary ligamentous stabilizer of the ankle joint and typically the most vulnerable ligament injured in a lateral ankle sprain (LAS). This study aimed to quantitively investigate the effect of the thickness and elastic modulus of ATFL on anterior ankle joint stiffness (AAJS) by developing nine subject-specific finite element (FE) models under acute injury, chronic injury, and control conditions of ATFL. A 120 N forward force was applied at the posterior calcaneus leading to an anterior translation of the calcaneus and talus to simulate the anterior drawer test (ADT). In the results, the ratio of the forward force to the talar displacement was used to assess the AAJS, which increased by 5.85% in the acute group and decreased by 19.78% in the chronic group, compared to those of the control group. An empirical equation described the relationship between AAJS, thickness, and elastic modulus (R-square 0.98). The equation proposed in this study provided an approach to quantify AAJS and revealed the effect of the thickness and the elastic modulus of ATFL on ankle stability, which may shed light on the potential diagnosis of lateral ligament injury

    Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against <i>Botrytis cinerea</i>

    No full text
    Gray mold caused by Botrytis cinerea is a common postharvest fungal disease in fruit and vegetables. The prevention and treatment of postharvest gray mold has been one of the hot research issues addressed by researchers. This study aimed to investigate the effect of L-methionine and L-arginine on Botrytis cinerea in vitro and on cherry tomato fruit. The results of the in vitro experiment showed that L-methionine and L-arginine had significant inhibitory effects on the mycelial growth and spore germination of Botrytis cinerea, and the inhibitory effects were enhanced with increasing L-methionine or L-arginine concentration. In addition, L-methionine and L-arginine treatment increased the leakage of Botrytis cinerea electrolytes, proteins and nucleic acids. The experiment involving propidium iodide staining and malondialdehyde content assay also confirmed that L-methionine and L-arginine treatment could lead to cell membrane rupture and lipid peroxidation. The results of scanning electron microscopy further verified that the morphology of hyphae was damaged, deformed, dented and wrinkled after treatment with L-methionine or L-arginine. Fruit inoculation experiments displayed that L-methionine and L-arginine treatments significantly inhibited the occurrence and development of gray mold in postharvest cherry tomato. Therefore, treatment with L-methionine or L-arginine might be an effective means to control postharvest gray mold in fruit and vegetables

    Integrated Analysis of Gut Microbiome and Lipid Metabolism in Mice Infected with Carbapenem-Resistant Enterobacteriaceae

    No full text
    The disturbance in gut microbiota composition and metabolism has been implicated in the process of pathogenic bacteria infection. However, the characteristics of the microbiota and the metabolic interaction of commensals&ndash;host during pathogen invasion remain more than vague. In this study, the potential associations of gut microbes with disturbed lipid metabolism in mice upon carbapenem-resistant Escherichia coli (CRE) infection were explored by the biochemical and multi-omics approaches including metagenomics, metabolomics and lipidomics, and then the key metabolites&ndash;reaction&ndash;enzyme&ndash;gene interaction network was constructed. Results showed that intestinal Erysipelotrichaceae family was strongly associated with the hepatic total cholesterol and HDL-cholesterol, as well as a few sera and fecal metabolites involved in lipid metabolism such as 24, 25-dihydrolanosterol. A high-coverage lipidomic analysis further demonstrated that a total of 529 lipid molecules was significantly enriched and 520 were depleted in the liver of mice infected with CRE. Among them, 35 lipid species showed high correlations (|r| &gt; 0.8 and p &lt; 0.05) with the Erysipelotrichaceae family, including phosphatidylglycerol (42:2), phosphatidylglycerol (42:3), phosphatidylglycerol (38:5), phosphatidylcholine (42:4), ceramide (d17:1/16:0), ceramide (d18:1/16:0) and diacylglycerol (20:2), with correlation coefficients higher than 0.9. In conclusion, the systematic multi-omics study improved the understanding of the complicated connection between the microbiota and the host during pathogen invasion, which thereby is expected to lead to the future discovery and establishment of novel control strategies for CRE infection

    Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials

    No full text
    <p>Owing to the good degradability and biocompatibility of polyphosphoesters (PPEs), the aim of the current study was to investigate a novel degradable composite of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) with cyclophosphate (CPE) via <i>in situ</i> melting polymerization to improve the degradation of n-HA/PAA. The structure of each composite was characterized via Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The degradation properties were studied in terms of the weight loss and pH in a phosphate-buffered saline (PBS) solution, while the surface morphology was examined using a scanning electron microscope-energy dispersive spectrometer (SEM-EDS) after soaking the surface in simulated body fluid (SBF). The cell proliferation, cell adhesion, and alkaline phosphatase (ALP) activity were used for the analysis of cytocompatibility. The weight loss results showed that the n-HA/PAA composite was 9.98 wt%, weighed after soaking in the PBS solution for 12 weeks, whereas the nano-hydroxyapatite/polyphosphoester-amino acid (n-HA/PPE-AA) composite was 46.94 wt%. The pH of the composites was in a suitable range between 6.64 to 7.06 and finally stabilized at 7.39. The SEM and EDS results revealed the formation of an apatite-like layer on the surface of the n-HA/PPE-AA composites after soaking in SBF for one week. The cell counting Kit 8 (CCK-8) assay of the cell culture in the leaching liquid of the n-HA/PPE-AA composites exhibited non-cytotoxicity and high-proliferation, and the cell adhesion showed the well spreading and normal phenotype extension of the cells on the n-HA/PPE-AA composites surface. Concurrently, the co-culture results of the composites and cells confirmed that the n-HA/PPE-AA composites exhibited a higher ALP activity. In summary, the results demonstrated that the n-HA/PPE-AA composites had a controllable degradation property, good bioactivity, and cytocompatibility.</p

    Ultrathin Spinel Membrane-Encapsulated Layered Lithium-Rich Cathode Material for Advanced Li-Ion Batteries

    No full text
    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g<sup>–1</sup>), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries
    corecore