14 research outputs found

    The Effect of Vinpocetine on Human Cytochrome P450 Isoenzymes by Using a Cocktail Method

    Get PDF
    Vinpocetine is a derivative of the alkaloid vincamine, which had been prescribed for chronic cerebral vascular ischemia and acute ischemic stroke or used as a dietary supplement for its several different mechanisms of biological activities. However, information on the cytochrome P450 (CYP) enzyme-mediated drug metabolism has not been previously studied. The present study was performed to investigate the effects of vinpocetine on CYPs activity, and cocktail method was used, respectively. To evaluate the effects of vinpocetine on the activity of human CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, human liver microsomes were utilized to incubate with the mixed CYPs probe substrates and the target components. The results indicate that vinpocetine exhibited weak inhibitory effect on the CYP2C9, where the IC50 value is 68.96 μM, whereas the IC50 values for CYP3A4, CYP2C19, CYP2D6, and CYP2E1 were all over range of 100 μM, which showed that vinpocetine had no apparent inhibitory effects on these CYPs. In conclusion, the results indicated that drugs metabolized by CYP2C9 coadministrated with vinpocetine may require attention or dose adjustment

    The Effect of Vinpocetine on Human Cytochrome P450 Isoenzymes by Using a Cocktail Method

    No full text
    Vinpocetine is a derivative of the alkaloid vincamine, which had been prescribed for chronic cerebral vascular ischemia and acute ischemic stroke or used as a dietary supplement for its several different mechanisms of biological activities. However, information on the cytochrome P450 (CYP) enzyme-mediated drug metabolism has not been previously studied. The present study was performed to investigate the effects of vinpocetine on CYPs activity, and cocktail method was used, respectively. To evaluate the effects of vinpocetine on the activity of human CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, human liver microsomes were utilized to incubate with the mixed CYPs probe substrates and the target components. The results indicate that vinpocetine exhibited weak inhibitory effect on the CYP2C9, where the IC 50 value is 68.96 M, whereas the IC 50 values for CYP3A4, CYP2C19, CYP2D6, and CYP2E1 were all over range of 100 M, which showed that vinpocetine had no apparent inhibitory effects on these CYPs. In conclusion, the results indicated that drugs metabolized by CYP2C9 coadministrated with vinpocetine may require attention or dose adjustment

    Topical medications for the treatment of recurrent aphthous stomatitis: A network meta-analysis

    No full text
    Background: The present network meta-analysis aims to answer the question "what is the best topical intervention for the treatment of recurrent aphthous stomatitis that can provide an acceptable pain relief and promote wound healing?". Methods: From inception to October 2022, PubMed, Embase, Scopus, Cochrane Library, and China National Knowledge Infrastructure were searched to identify all potentially eligible randomized controlled trials. The primary outcomes were pain scores and/or healing time, while the secondary outcomes were the associated side effects. The Bayesian network meta-analysis accompanied by a random effect model and 95% credible intervals were calculated. Results: Forty-three randomized controlled trials with a total of 3067 participants, comparing 20 different topical medications, were included. Concerning pain reduction, the network meta-analysis failed to show any statistically significant differences when different topical treatments were compared together or even with a placebo at different time intervals. Except for doxycycline, which showed a statistically significant difference in terms of accelerating healing time, other topical interventions showed no statistically significant differences when compared with placebo or with each other. Conclusion: Within the limitations of the current network meta-analysis, it seems that: A low to moderate quality of evidence showed no superiority of any topical treatment over others concerning pain reduction, although rank probability tests revealed sucralfate, doxycycline, hyaluronic acid, and chamomile as the most efficacious treatment options at different evaluation times. Hence, further well-designed clinical trials with larger sample sizes are warranted. Topical doxycycline was shown to be the most efficacious intervention in promoting healing of recurrent aphthous stomatitis.This study is supported by (1) the project of Guangzhou Science and Technology Bureau (202002030301), (2) the Guangdong Basic and Applied Research Fund Committee Project (2021A1515110988), and (3) the Guangdong Health Commission (A2021412).Scopu

    <i>OsHsfB4b</i> Confers Enhanced Drought Tolerance in Transgenic Arabidopsis and Rice

    No full text
    Heat shock factors (Hsfs) play pivotal roles in plant stress responses and confer stress tolerance. However, the functions of several Hsfs in rice (Oryza sativa L.) are not yet known. In this study, genome-wide analysis of the Hsf gene family in rice was performed. A total of 25 OsHsf genes were identified, which could be clearly clustered into three major groups, A, B, and C, based on the characteristics of the sequences. Bioinformatics analysis showed that tandem duplication and fragment replication were two important driving forces in the process of evolution and expansion of the OsHsf family genes. Both OsHsfB4b and OsHsfB4d showed strong responses to the stress treatment. The results of subcellular localization showed that the OsHsfB4b protein was in the nucleus whereas the OsHsfB4d protein was located in both the nucleus and cytoplasm. Over-expression of the OsHsfB4b gene in Arabidopsis and rice can increase the resistance to drought stress. This study provides a basis for understanding the function and evolutionary history of the OsHsf gene family, enriching our knowledge of understanding the biological functions of OsHsfB4b and OsHsfB4d genes involved in the stress response in rice, and also reveals the potential value of OsHsfB4b in rice environmental adaptation improvement

    Understanding mechanism of voltage decay and temperature sensitivity of Li-rich manganese-based cathode materials

    No full text
    Li-rich manganese-based (LRM) cathode materials are known as one of the most promising cathode materials for new-generation lithium-ion batteries. At present, exploring the complex voltage decay mechanism of LRM is the main task to promote its commercialization. Herein, the structural evolution and transition metal valence state change of LRM during different reaction stages under different temperatures are discussed, and the mechanism of voltage decay is finally determined based on the electrochemical properties. The results show the evolution of irreversible thermodynamic structure is the fundamental cause leading to voltage decay of LRM cathode, and it worsens with increasing temperature. The early activation of inert Mn, multiple phase transitions, migration of transition metals to the surface, anisotropy of internal valence states caused by partial valence failure and severe interfacial reactions are all strong proofs of the above views. In summary, the reason for voltage decay is revealed by investigating the sensitivity of the LRM cathode materials to temperature. This work not only provides strong evidence for the mechanism of the voltage decay, but also points out the direction to modification design for achieving future commercialization of LRM cathode materials

    Genome-Wide Identification of the Cytochrome P450 Superfamily Genes and Targeted Editing of <i>BnCYP704B1</i> Confers Male Sterility in Rapeseed

    No full text
    The cytochrome P450 (CYP450) monooxygenase superfamily, which is involved in the biosynthesis pathways of many primary and secondary metabolites, plays prominent roles in plant growth and development. However, systemic information about CYP450s in Brassica napus (BnCYP450) was previously undiscovered and their biological significance are far from understood. Members of clan 86 CYP450s, such as CYP704Bs, are essential for the formation of pollen exine in plant male reproduction, and the targeted mutagenesis of CYP704B genes has been used to create new male sterile lines in many crops. In the present study, a total of 687 BnCYP450 genes were identified in Brassica napus cultivar “Zhongshuang 11” (ZS11), which has nearly 2.8-fold as many CYP450 members as in Arabidopsis thaliana. It is rationally estimated since Brassica napus is a tetraploid oil plant with a larger genome compared with Arabidopsis thaliana. The BnCYP450 genes were divided into 47 subfamilies and clustered into nine clans. Phylogenetic relationship analysis reveals that CYP86 clan consists of four subfamilies and 109 BnCYP450s. Members of CYP86 clan genes display specific expression profiles in different tissues and in response to ABA and abiotic stresses. Two BnCYP450s within the CYP704 subfamily from CYP86 clan, BnCYP704B1a and BnCYP704B1b, display high similarity to MS26 (Male Sterility 26, also known as CYP704B1). These two BnCYP704B1 genes were specifically expressed in young buds. We then simultaneously knocked-out these two BnCYP704B1 genes through a clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) genome engineering system. The edited plants displayed a pollenless, sterile phenotype in mature anthers, suggesting that we successfully reproduced genic male sterility (GMS, also known as nuclear male sterility) lines in Brassica napus. This study provides a systemic view of BnCYP450s and offers a strategy to facilitate the commercial utility of the CRISPR/Cas9 system for the rapid generation of GMS in rapeseed via knocking-out GMS controlling genes

    Blue light receptor CRY1 regulates HSFA1d nuclear localization to promote plant thermotolerance

    No full text
    Summary: Temperature increases as light intensity rises, but whether light signals can be directly linked to high temperature response in plants is unclear. Here, we find that light pre-treatment enables plants to survive better under high temperature, designated as light-induced thermotolerance (LIT). With short-term light treatment, plants induce light-signaling pathway genes and heat shock genes. Blue light photoreceptor cryptochrome 1 (CRY1) is required for LIT. We also find that CRY1 physically interacts with the heat shock transcription factor A1d (HsfA1d) and that HsfA1d is involved in thermotolerance under light treatment. Furthermore, CRY1 promotes HsfA1d nuclear localization through importin alpha 1 (IMPα1). Consistent with this, CRY1 shares more than half of the chromatin binding sites with HsfA1d. Mutation of CRY1 (cry1-304) diminishes a large number of HsfA1d binding sites that are shared with CRY1. We present a model where, by coupling light sensing to high-temperature stress, CRY1 confers thermotolerance in plants via HsfA1d
    corecore