27 research outputs found

    Sex-Based Differences in Gut Microbiota Composition in Response to Tuna Oil and Algae Oil Supplementation in a D-galactose-Induced Aging Mouse Model

    Get PDF
    Our previous work indicated that a mixture of tuna oil and algae oil treatment in male mice effectively relieved D-galactose (D-gal)-induced aging and resulted in gut microbiota alterations, and that the best anti-aging effects were observed for a tuna oil to algae oil ratio of 1:2. However, the possibility of a sex-based difference in the anti-aging effect of the tuna oil and algae oil mixture or gut microbiota variation, has rarely been investigated. In this study, the anti-aging effect of an oil mixture (1:2) in male and female mice was measured, and oil treatment improved the learning and cognition of mice that were damaged by D-gal, increased the activities of anti-oxidative enzymes, and decreased the level of MDA, which acted as a hallmark of oxidative damage to lipids. Male mice showed better anti-aging effects than female mice with a specific oil mixture ratio, and the clinical drug donepezil showed a similar or better effect on aging alleviation than oil treatments in both sexes. On the other hand, the same oil treatment led to different gut microbiota composition alterations in male and female mice. Redundancy analysis (RDA) identified 31 and 30 key operational taxonomic units (OTUs) in the male and female mice, respectively, and only three of these OTUs overlapped. Moreover, the abundance of Lactobacillus and several probiotic-like butyric acid producers was higher in male mice than in female mice, whereas the abundance of some inflammation-related genera, such as Clostridium XlVa, was lower in male mice. In conclusion, this study indicated the sex-based differences related to the anti-aging effects of tuna oil and algae oil treatment are accompanied by sex-based differences in gut microbiota modulation

    iTRAQ-Based Quantitative Proteomic Profiling of Staphylococcus aureus Under Different Osmotic Stress Conditions

    Get PDF
    Staphylococcus aureus (S. aureus) is an extremely halotolerant pathogenic bacterium with high osmotic stress tolerance, and it is frequently encountered in aquatic production and preservation. However, the mechanism underlying the extremely high osmotic stress tolerance of S. aureus remains unclear. In this study, the isobaric tags for relative and absolute quantification (iTRAQ) method was used to identify the differentially expressed proteins (DEPs) under different sodium chloride (NaCl) concentrations. Compared with the control group (0% NaCl), the 10 and 20% NaCl groups had 484 DEPs and 750 DEPs, respectively. Compared with the 10% NaCl group, the 20% NaCl group had 361 DEPs. Among the DEPs, proteins involved in fatty acid synthesis, proline/glycine betaine biosynthesis and transportation, stress tolerance, cell wall biosynthesis and the TCA cycle were upregulated, whereas proteins associated with biofilm formation and pathogenic infections were downregulated. The results obtained in this study indicate that under extremely high osmotic stress, modification of the cell membrane structure, increased biosynthesis and transportation of osmotic protectants, and redistribution of energy metabolism contribute to the osmotic stress tolerance of S. aureus, and the infectious ability of the bacteria may be limited. The aim of this study was to provide new insight into how S. aureus tolerates the high-salt conditions involved in aquatic production and preservation

    DHA藻油纳米脂质体粉末制备:壁材对储存稳定性、 体外消化及细胞摄取的影响Powdered-nanoliposome loaded with DHA algal oil: effects of wall materials on storage stability, in vitro digestibility and cellular uptake

    No full text
    为开发具有更高储存稳定性和生物利用度的负载DHA藻油的脂质体粉末,以DHA藻油为原料,首先利用大豆卵磷脂制备负载DHA藻油的纳米脂质体悬液,继而分别使用3种壁材(麦芽糊精、羟丙基-β-环糊精及二者质量比为1∶ 1的混合物)对脂质体悬液包埋后进行喷雾干燥,制得DHA藻油纳米脂质体粉末,最后比较了3种壁材对脂质体粉末氧化稳定性、体外消化和细胞摄取的影响。结果表明:DHA藻油脂质体悬液制备的最佳条件为大豆卵磷脂与DHA藻油质量比3∶ 1、超声时间1 min、旋蒸温度45 ℃、PBS的pH 7.0、PBS浓度0.02 mol/L、PBS用量10 mL(大豆卵磷脂与藻油总质量0.4 g时),在此条件下DHA藻油脂质体悬液的包封率为88.01%;3种脂质体粉末粒径范围在(253.87±1.96)~(408.80±1.23)nm之间,Zeta电位在 (- 40.80±0.78)~(-34.87±0.25) mV之间;羟丙基-β-环糊精与麦芽糊精混合物为壁材时,DHA藻油纳米脂质体粉末具有更高的氧化稳定性、更低的水分含量和更慢的脂肪酸体外消化释放率; 3种脂质体粉末使Caco-2细胞中SLC27 A4、FABP4和CD36基因表达增加,说明脂质体粉末均具有良好的细胞摄取。综上,基于大豆卵磷脂制备的DHA藻油纳米脂质体及喷雾干燥技术有效改善了DHA藻油的氧化稳定性。In order to develop DHA algal oil-loaded liposome powder with higher storage stability and bioavailability, the liposome suspension loaded with DHA algal oil was prepared by using DHA algal oil and soy lecithin as raw materials, and then three kinds of wall materials (maltodextrin, hydroxypropyl-β-cyclodextrin and their mixture with a mass ratio of 1∶ 1) were used to embed the liposome suspension and spray drying to obtain powdered-nanoliposome loaded with DHA algal oil. In addition, the effects of the three wall materials on the oxidative stability, in vitro digestibility and cellular uptake of the liposome powder were compared. The results showed that the optimal conditions for the preparation of DHA algal liposome suspension were as follows: mass ratio of soy lecithin to algal oil 3∶ 1, ultrasonic time 1 min, evaporation temperature 45 ℃, PBS pH 7.0, PBS concentration 0.02 mol/L, PBS dosage 10 mL (mass of soy lecithin and DHA algal oil 0.4 g). Under the optimal conditions, the encapsulation rate of DHA algal oil liposome suspension was 8801%. The particle size range of the three liposome powders was between (253.87±1.96) - (408.80±1.23) nm, and the Zeta potential was (-40.80±0.78)-(-34.87±0.25) mV. When the mixture of hydroxypropyl-β-cyclodextrin and maltodextrin was used as wall material, powdered-nanoliposome loaded with DHA algal oil had higher oxidation stability, lower water content and slower in vitro digestion release rate of fatty acids. The three liposome powder increased the expression of SLC27 A4, FABP4 and CD36 genes in Caco-2 cells, indicating that the liposome powders had good cell uptake. In conclusion, DHA algal oil nanoliposomes prepared based on soy lecithin and spray drying technology can effectively improve the oxidative stability of DHA algal oil

    金属有机骨架固定化脂肪酶的构筑及其催化 制备生物柴油的研究进展Progress on immobilization of lipase on metal organic framework and its catalytic preparation of biodiesel

    No full text
    摘要:金属有机骨架(MOF)具有多样性、高比表面积、化学稳定性和易于后修饰等优势,是固定化酶的优良载体。为了促进生物柴油的发展,针对MOF固定化脂肪酶的方法及其在生物柴油生产中的应用进展进行了综述。MOF固定化脂肪酶的方法有物理吸附法、共价结合法、原位包埋法等,采用MOF固定脂肪酶生产生物柴油,在一定程度上降低了生产成本和提高了产率。开发新型的脂肪酶固定化方法及寻求合适的固定化载体是生物柴油发展的关键。 Metal organic framework (MOF) is an excellent carrier for immobilized enzymes due to its advantages of diversity, high specific surface area, chemical stability and easy post-modification. In order to promote the development of biodiesel, the methods of immobilizing lipase on MOF and its application progress on biodiesel preparation process was reviewed. The methods of immobilizing lipase on MOF include physical adsorption, covalent binding, in-situ embedding, etc. The use of MOF to immobilize lipase for biodiesel production has reduced the production cost and improved the yield to a certain extent. The development of novel immobilization methods for lipase and the search for suitable immobilization carriers have become the key to the development of biodiesel

    Molecular targets and anti-cancer potential of escin

    No full text
    10.1016/j.canlet.2018.02.027CANCER LETTERS4221-Au

    Tuna Oil Alleviates d‑Galactose Induced Aging in Mice Accompanied by Modulating Gut Microbiota and Brain Protein Expression

    No full text
    To discern whether tuna oil modulates the expression of brain proteins and the gut microbiota structure during aging induced by d-galactose, we generated an aging mouse model with d-galactose treatment, and the mice showed aging and memory deterioration symptoms according to physiological and biochemical indices. Treatment with different doses of tuna oil alleviated the symptoms; the high dose showed a better effect. Subsequently, brain proteomic analysis showed the differentially expressed proteins were involved in damaged synaptic system repairment and signal transduction system enhancement. In addition, tuna oil treatment restored the diversity of gut microbiota, 27 key operational taxonomic units, which were identified using a redundancy analysis and were significantly correlated with at least one physiological index and three proteins or genes. These findings suggest that the combination of proteomics and gut microbiota is an effective strategy to gain novel insights regarding the effect of tuna oil treatment on the microbiota–gut–brain axis

    Sensitivity of breast cell lines to gemcitabine in relationship with Bcl-2 expression.

    No full text
    <p>(A) IC<sub>50</sub> of gemcitabine to breast cancer cell lines. Mean IC<sub>50</sub>±Standard Error (SE) of at least two independent experiments were performed in triplicates. Cells were treated with gemcitabine for 72 hr and cell proliferation was assessed using the MTS assay. (B) Immunoblot of Bcl-2 baseline expression in breast cancer cell lines.</p

    Gene expression analysis in response to gemcitabine and combined treatment.

    No full text
    <p>Heatmap of 2702 significant differentially expressed genes in gemcitabine resistant, GEM-R and gemcitabine sensitive, GEM-S treated with gemcitabine alone (Gem) or in combination with gossypol (Gem+GOS) relative to untreated matched control cell lines. The expression levels of each gene are higher and lower than control is depicted in red and green, respectively.</p

    Mechanism of reversal of gemcitabine resistance by gossypol in high Bcl-2 cell lines.

    No full text
    <p>Immunoblots of apoptotic protein expressions in gemcitabine resistant cell lines (GEM-R) when treated with combination of gossypol and gemcitabine for 48 hours. The results shown are representative of two independent experiments.</p

    IC<sub>50</sub> of gossypol in different types of cancer cell lines.

    No full text
    <p>Nasopharyngeal (n = 4), breast (n = 3) and gastric (n = 3) cancer cell lines were tested for their sensitivity to gossypol. Mean IC<sub>50</sub> of ±Standard Error (SE) of at least two independent experiments were performed in triplicates. Cells were treated with gossypol for 72 hr and cell proliferation was assessed using the MTS assay.</p
    corecore