2 research outputs found

    An Optimization-Based Approach for Simultaneous Chemical Process and Heat Exchanger Network Synthesis

    No full text
    We propose a mixed-integer nonlinear programming (MINLP) model for simultaneous chemical process and heat exchanger network synthesis. The model allows process stream inlet/outlet temperatures and flow rates to vary and can be extended to handle unclassified streams, thereby facilitating integration with a process synthesis model. The proposed model is based on a generalized transshipment approach in which the heat cascade is built upon a “dynamic” temperature grid. Both hot and cold streams can cascade heat so that exchanger inlet and outlet temperature, heat duty, and area can be calculated at each temperature interval. We develop mixed-integer constraints to model the number of heat exchangers in the network. Finally, we present several solution strategies tailored to improve the computation performance of the proposed models

    Simultaneous Utility and Heat Exchanger Area Targeting for Integrated Process Synthesis and Heat Integration

    No full text
    We propose a mixed-integer nonlinear programming (MINLP) model for simultaneous utility and heat exchanger area targeting with variable stream conditions. The model represents the composite-curve-based area targeting method by constructing the hot and cold composite curves mathematically. We introduce a “dynamic” enthalpy grid onto which the stream inlet/outlet temperatures and enthalpies are mapped. By calculating the temperatures at each grid point and the stream heat duties at each interval, the utility consumption and heat exchanger areas are simultaneously optimized using an economic criterion. We discuss preprocessing methods tailored to aid the solution of the proposed MINLP model. The model is applied to two illustrative examples as well as an example where it is integrated with a process synthesis model
    corecore