14 research outputs found

    Immunogenicity and Protective Efficacy against Murine Tuberculosis of a Prime-Boost Regimen with BCG and a DNA Vaccine Expressing ESAT-6 and Ag85A Fusion Protein

    Get PDF
    Heterologous prime-boost regimens utilizing BCG as a prime vaccine probably represent the best hope for the development of novel tuberculosis (TB) vaccines. In this study, we examined the immunogenicity and protective efficacy of DNA vaccine (pcD685A) expressing the fusion protein of Ag85A and ESAT-6 (r685A) and its booster effects in BCG-immunized mice. The recombinant r685A fusion protein stimulated higher level of antigen-specific IFN-γ release in tuberculin skin test- (TST-) positive healthy household contacts of active pulmonary TB patients than that in TST-negative population. Vaccination of C57BL/6 mice with pcD685A resulted in significant protection against challenge with virulent Mycobacterium tuberculosis H37Rv when compared with the control group. Most importantly, pcD685A could act as a BCG booster and amplify Th1-type cell-mediated immunity in the lung of BCG-vaccinated mice as shown the increased expression of IFN-γ. The most significant reduction in bacterial load of both spleen and lung was obtained in mice vaccinated with BCG prime and pcD685A DNA booster when compared with BCG or pcD685A alone. Thus, our study indicates that pcD685A may be an efficient booster vaccine against TB with a strong ability to enhance prior BCG immunity

    Study on the Degradation of Residual Omethoate in Farmland Soil by Bacterial Agent PA9

    No full text
    【Objective】The study aims to verify the application effect of bacterial agent PA9 degrading omethoate which residual in the soil. Soil physical and chemical properties, tomato growth and soil microbial diversity affect by bacterial agent PA9 were researched at the same time.【Method】Bacterial agent PA9 was made from bacteria strain ZZY-C13-1-9, when omethoate artificial add into the soil about 100 mg/kg, the bacterial agent PA9 were applied 0.1%. The period of remediation lasted for 50 days. Soil samples were taken every 10 days. The content of omethoate in soil were measured by HPLC. A selective culture medium is used to isolate strain ZZY-C13-1-9. The microbial diversity were measured by illumina miSeq high-throughput sequencing. Soil physical and chemical indexes were determined by national standard method. Tomato growth index were monitored.【Result】Initial content of omethoate in soil was 100 mg/kg at 0 days. After 40 days, the omethoate content in soil decrease to 5.3 mg/kg at remediation experimental group, which was significantly different with control group (48.79 mg/kg). Microbial strain ZZY-C13-1-9 could colonize in the soil and the proportion of soil microorganisms in omethoate soil increased after 10 - 20 days of remediation. The residual omethoate content in the soil was significantly reduced, which indicated that the functional strain could play a role in degrading omethoate in contaminated soil. The results of high-throughput sequencing showed that the proportion of Pseudomonas sp. in soil microbial flora decreased with the decrease of omethoate content, indicating that the bacterial agent PA9 would not permanently change the distribution of soil microbial diversity, and the restored soil could effectively restore the diversity of bacterial flora. The contents of total nitrogen, microbial nitrogen, available phosphorus and MWD in soil aggregates increased significantly compared with the control, and the use of microbial agent PA9 had no negative effect on the growth of tomato.【Conclusion】The bacterial agent PA9 can colonize and accelerate the degradation of omethoate in omethoate-contaminated soil in a short period of time, improve the microbial diversity of contaminated soil and have no adverse effects on the physical and chemical properties of the soil and the planting of tomatoes

    Gene Expression Profiles of Rodent Atrophic Gastritis Induced By Hot and Salt Water

    No full text
    Diet factors may be potential causes for atrophic gastritis. This study is to establish rat atrophic gastritis models under various hot and salt water conditions and to explore the associated molecular mechanisms. 96 SD rats were divided randomly into 4 experimental groups and used to establish atrophic gastritis models. 2 rats from each group were sacrificed every other week to collect gastric sinus tissues for pathological analysis. When atrophic lesion was identified in a given group, all remaining rats in that group were sacrificed and gastric sinus tissues were collected. The cDNA probes from sinus atrophic lesion or control sinus mucous were labeled with Cy5 or Cy3, respectively. These probes were mixed and hybridized with cDNA microarrays. Hot salt water group was pathologically confirmed to exhibit atrophic lesion in 10 weeks. Salt water group and hot water group were confirmed to exhibit atrophic lesion in 24 weeks. The atrophic lesions located mainly in gastric sinus. 288 differentially expressed genes were identified between hot salt water group and normal control group. 162 differentially expressed genes were identified between hot water group and normal control group. 81 differentially expressed genes were identified between hot salt water group and salt water group. In conclusion, rat atrophic gastritis models induced by various hot and salt water conditions have been established. The corresponding gene expression profiles have been firstly established. This study shows that dietary factors such as temperature and salt concentration may play an important role in the development of atrophic gastritis

    Immunogenicity and Protective Efficacy of a Novel Recombinant BCG Strain Overexpressing Antigens Ag85A and Ag85B

    Get PDF
    Recombinant Bacillus Calmette-Guérin (rBCG) strain is the promising vaccine candidate for tuberculosis (TB) prevention, which aims at providing more enduring and enhanced protection than the parental BCG vaccine. In this study, three rBCG strains overexpressing immunodominant antigens Ag85B (rBCG::85B), Ag85A (rBCG::85A), or both (rBCG::AB) of Mycobacterium tuberculosis were constructed, respectively. rBCG strains showed higher level of overexpression of Ag85A and/or Ag85B proteins than BCG containing empty vector pMV261(rBCG::261), which had low levels of endogenous expression of both proteins as expected. rBCG::AB strain could provide the strongest short-term and long-term protection in the lung against intravenous infection with virulent M. tuberculosis than rBCG::261 control and other two rBCG strains overexpressing single antigen. The stronger and longer-lasting protection provided by rBCG::AB than rBCG::261 was correlated with systemic in vitro antigen-specific IFN-γ responses. Therefore, our results indicate that rBCG::AB could be a very promising TB vaccine candidate and should be further evaluated for the preclinical test

    Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation

    No full text
    Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis
    corecore