169 research outputs found

    DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection under Partial Occlusion

    Get PDF
    In this paper, we study the task of detecting semantic parts of an object, e.g., a wheel of a car, under partial occlusion. We propose that all models should be trained without seeing occlusions while being able to transfer the learned knowledge to deal with occlusions. This setting alleviates the difficulty in collecting an exponentially large dataset to cover occlusion patterns and is more essential. In this scenario, the proposal-based deep networks, like RCNN-series, often produce unsatisfactory results, because both the proposal extraction and classification stages may be confused by the irrelevant occluders. To address this, [25] proposed a voting mechanism that combines multiple local visual cues to detect semantic parts. The semantic parts can still be detected even though some visual cues are missing due to occlusions. However, this method is manually-designed, thus is hard to be optimized in an end-to-end manner. In this paper, we present DeepVoting, which incorporates the robustness shown by [25] into a deep network, so that the whole pipeline can be jointly optimized. Specifically, it adds two layers after the intermediate features of a deep network, e.g., the pool-4 layer of VGGNet. The first layer extracts the evidence of local visual cues, and the second layer performs a voting mechanism by utilizing the spatial relationship between visual cues and semantic parts. We also propose an improved version DeepVoting+ by learning visual cues from context outside objects. In experiments, DeepVoting achieves significantly better performance than several baseline methods, including Faster-RCNN, for semantic part detection under occlusion. In addition, DeepVoting enjoys explainability as the detection results can be diagnosed via looking up the voting cues

    Detecting Semantic Parts on Partially Occluded Objects

    Get PDF
    In this paper, we address the task of detecting semantic parts on partially occluded objects. We consider a scenario where the model is trained using non-occluded images but tested on occluded images. The motivation is that there are infinite number of occlusion patterns in real world, which cannot be fully covered in the training data. So the models should be inherently robust and adaptive to occlusions instead of fitting / learning the occlusion patterns in the training data. Our approach detects semantic parts by accumulating the confidence of local visual cues. Specifically, the method uses a simple voting method, based on log-likelihood ratio tests and spatial constraints, to combine the evidence of local cues. These cues are called visual concepts, which are derived by clustering the internal states of deep networks. We evaluate our voting scheme on the VehicleSemanticPart dataset with dense part annotations. We randomly place two, three or four irrelevant objects onto the target object to generate testing images with various occlusions. Experiments show that our algorithm outperforms several competitors in semantic part detection when occlusions are present.Comment: Accepted to BMVC 2017 (13 pages, 3 figures

    Steps toward Parallel Intelligence

    Get PDF
    The origin of artificial intelligence is investigated, based on which the concepts of hybrid intelligence and parallel intelligence are presented. The paradigm shift in Intelligence indicates the "new normal" of cyber-social-physical systems (CPSS), in which the system behaviors are guided by Merton's Laws. Thus, the ACP-based parallel intelligence consisting of Artificial societies, Computational experiments and Parallel execution are introduced to bridge the big modeling gap in CPSS

    A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans

    Full text link
    Deep neural networks have been widely adopted for automatic organ segmentation from abdominal CT scans. However, the segmentation accuracy of some small organs (e.g., the pancreas) is sometimes below satisfaction, arguably because deep networks are easily disrupted by the complex and variable background regions which occupies a large fraction of the input volume. In this paper, we formulate this problem into a fixed-point model which uses a predicted segmentation mask to shrink the input region. This is motivated by the fact that a smaller input region often leads to more accurate segmentation. In the training process, we use the ground-truth annotation to generate accurate input regions and optimize network weights. On the testing stage, we fix the network parameters and update the segmentation results in an iterative manner. We evaluate our approach on the NIH pancreas segmentation dataset, and outperform the state-of-the-art by more than 4%, measured by the average Dice-S{\o}rensen Coefficient (DSC). In addition, we report 62.43% DSC in the worst case, which guarantees the reliability of our approach in clinical applications.Comment: Accepted to MICCAI 2017 (8 pages, 3 figures
    • …
    corecore