56 research outputs found

    Current and Emerging Innovations for Detection of Food-Borne Salmonella

    Get PDF
    Salmonella is one of the leading causes of food-borne illnesses worldwide, and one of the main contributors to salmonellosis is the consumption of contaminated egg, poultry, pork, beef, and milk products. Since deleterious effects of Salmonella on public health and the economy continue to occur, improving safety of food products by early detection of food-borne pathogens would be considered an important component for limiting exposure to Salmonella contamination. Therefore, there is an ongoing need to develop more advanced detection methods that can identify Salmonella accurately and rapidly in foods before they reach consumers. In the past three decades, there have been increasing efforts toward developing and improving rapid pathogen detection and characterization methodologies for application to food products. In this chapter, we discuss molecular methods for detection, identification, and genetic characterization of Salmonella in food. In addition, the advantages and disadvantages of the established and emerging rapid detection methods are addressed here. The methods with potential application to the industry are highlighted in this chapter

    Colorimetric Detection of Copper Ion Based on Click Chemistry

    Get PDF
    Two colorimetric assays, lateral flow biosensor (LFB) and hemin/G-Quadruplex DNAzyme-based colorimetric assay, were developed for the detection of copper ion based on click chemistry. Two single-strand DNA (ssDNA) with azide- and alkyne-modified at 3′ and 5′ separately can be linked by the Cu+-catalyzed click chemistry. For hemin/G-Quadruplex DNAzyme-based assay, the two ssDNA fragments linked by Cu+-catalyzed click chemistry could form a complete G-rich sequence that severed as a horse-radish peroxidase. In the presence of hemin and K+, the colorless substrate tetramethyl benzidine (TMB) is catalyzed into a colored product by the G-rich sequence. The concentration of Cu2+ can then be quantitatively analyzed by measuring the color density. For the LFB assay, the two ligated ssDNA fragments could form a sandwich complex between an ssDNA fragment immobilized on gold nanoparticles and another ssDNA fragment on test zone of a biosensor, respectively. The biosensor enables visual detection of copper ion with excellent specificity. In comparison with conventional methods, the present assays are simpler to operate and more cost-effective to use, and so have great potential in point-of-care diagnosis and environmental monitoring

    Emerging Techniques for Thalassemia Gene Detection

    Get PDF
    Isothermal nucleic acid amplification is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature such as 37 and 42°C. Isothermal nucleic acid amplification approach offers several advantages over temperature circle methods (such as PCR) including rapid assay results, cost-effectiveness, and portability. Two detection approaches based on circular strand-displacement polymerization reaction (CSDPR) were presented in this chapter for sensitive and specific thalassemia gene detection. One is a lateral flow strip biosensor based on CSDPR for semi-quantitative detection of thalassemia DNA. The other is a spectrophotometric DNA detection approach based on CSDPR for quantitative detection of thalassemia DNA

    Current and Emerging Technologies for Rapid Detection of Pathogens

    Get PDF
    Foodborne diseases, caused by pathogenic bacteria, have become an important social issue in the field of food safety. It presents a widespread and growing threat to human health in both developed and developing countries. As such, techniques for the detection of foodborne pathogens and waterborne pathogens are urgently needed to prevent the occurrence of human foodborne infections. Although traditional culture-based bacterial isolation and identification are the “gold standard” methods with high preciseness, their drawbacks in time-consuming are inadequate for rapid detection of pathogen to reduce foodborne disease occurrence. Fortunately, with the development of biotechnologies and nanotechnologies, various kinds of new technologies for rapid detection of pathogens have been developed so far, such as nucleic acid-based methods, antibody-based methods, and aptamer-based assays. In this chapter, we summarized the principles and the application of some recent rapid detection technologies for pathogenic bacteria. Moreover, the advantages and disadvantages of the established and emerging rapid detection methods are addressed here

    Electrochemical Sensors for Food Safety

    Get PDF
    Food safety poses an increasing threat to human health worldwide. The development of analytical methods and techniques to ensure food safety is therefore of great importance. Electrochemical sensors provide unique opportunity to realize sensitive, accurate, rapid, and portable detection for food safety. They have the potential to overcome the restrictions and limitations of traditional methods. In this chapter, we review the progress of electrochemical sensors for the detection of food contaminants including heavy metals, illegal additives, pesticide residues, veterinary drug residues, biological toxins, and foodborne pathogen. Future perspectives and challenges are also discussed

    Strand Displacement Amplification for Multiplex Detection of Nucleic Acids

    Get PDF
    The identification of various targets such as bacteria, viruses, and other cells remains a prerequisite for point-of-care diagnostics and biotechnological applications. Nucleic acids, as encoding information for all forms of life, are excellent biomarkers for detecting pathogens, hereditary diseases, and cancers. To date, many techniques have been developed to detect nucleic acids. However, most of them are based on polymerase chain reaction (PCR) technology. These methods are sensitive and robust, but they require expensive instruments and trained personnel. DNA strand displacement amplification is carried out under isothermal conditions and therefore does not need expensive instruments. It is simple, fast, sensitive, specific, and inexpensive. In this chapter, we introduce the principles, methods, and updated applications of DNA strand displacement technology in the detection of infectious diseases. We also discuss how robust, sensitive, and specific nucleic acid detection could be obtained when combined with the novel CRISPR/Cas system

    Graphene Oxide-Based Biosensors

    Get PDF
    In this chapter, the latest developments in graphene oxide-based biosensors are presented. These biosensors are complexes of graphene oxide and biomacromolecules, including enzymes such as glucose oxidase, horseradish peroxidase, laccase, and nucleic acids such as DNA and RNA. The structure, design and preparation process (immobilization process) of the above graphene oxide-biomacromolecule composites were summarized. Some typical examples of immobilization of biological macromolecules are described. The immobilization efficiency and electrochemical performance of immobilized biomolecules based on graphene oxide were discussed, which may guide designing better graphene oxide-based biosensors

    The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner

    Get PDF
    SummaryReprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming

    Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells

    Get PDF
    SummarySomatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However, the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound, vitamin C (Vc), enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence, a recently identified roadblock for reprogramming. In addition, Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process
    • …
    corecore