
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 5

Current and Emerging Innovations for Detection of
Food-Borne Salmonella

Wei Wu and Lingwen Zeng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67264

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Wei Wu and Lingwen Zeng

Additional information is available at the end of the chapter

Abstract

Salmonella is one of the leading causes of food-borne illnesses worldwide, and one of 
the main contributors to salmonellosis is the consumption of contaminated egg, poultry, 
pork, beef, and milk products. Since deleterious effects of Salmonella on public health and 
the economy continue to occur, improving safety of food products by early detection of 
food-borne pathogens would be considered an important component for limiting expo-
sure to Salmonella contamination. Therefore, there is an ongoing need to develop more 
advanced detection methods that can identify Salmonella accurately and rapidly in foods 
before they reach consumers. In the past three decades, there have been increasing efforts 
toward developing and improving rapid pathogen detection and characterization meth-
odologies for application to food products. In this chapter, we discuss molecular methods 
for detection, identification, and genetic characterization of Salmonella in food. In addi-
tion, the advantages and disadvantages of the established and emerging rapid detection 
methods are addressed here. The methods with potential application to the industry are 
highlighted in this chapter.

Keywords: Salmonella, food-borne pathogens, rapid detection, molecular methods, 
aptamer, antibody

1. Introduction

Food-borne disease is one of the major public health problems for the food industry, espe-

cially in developing countries [1]. Failure to detect food-borne pathogens may lead to a dread-

ful effect. The World Health Organization (WHO) reported that in 2010 alone 1.8 million 
people died from diarrheal diseases, a great proportion of these cases can be attributed to 
contaminated food and drinking water [2]. The Centers for Disease Control and Prevention 
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(CDC) have estimated that 48 million cases of food-borne illnesses occur in the United States 
(US) annually, approximately 128,000 cases require hospitalization, and 3,000 cases result in 
death [3]. The CDC reported that viruses, bacteria, and parasites are major causative agents 

for food-borne illnesses. Among these, bacterial agents including Salmonella, Listeria monocy-

togenes, and Escherichia coli are associated with these cases, being responsible for most of the 

hospitalizations (63.9%) and deaths (63.7%). Especially, Salmonella species were considered as 

the leading cause for these more severe cases resulting in 35% of the hospitalizations and 28% 
of the deaths [4]. Salmonella, belonging to the family of Enterobacteriaceae, are Gram-negative, 

facultative anaerobic, and nonspore-forming bacilli. The genus Salmonella is consisted of two 

species, enterica and bongori, with six subspecies of S. enterica. The different serotypes are 
divided based on the specific surface molecules O-antigen (O-Ag) and H-antigen (H-Ag) 
[5]. Collectively, there are over 2500 serotypes of salmonellae capable of causing disease in 
humans. Most serotypes of the salmonellae could cause gastroenteritis, while a few sero-

types of salmonellae would cause severe disease enteric fever, which was characterized as the 

onset of high fever accompanied with abdominal pain and malaise without diarrhea or vom-

iting [6]. Commonly, salmonellosis is self-limiting, resolving in about a week. Occasionally, 
however, the infection becomes systemic, a much more severe disease requiring antibiotic 
interventions [7]. The dose of Salmonella causing infection in humans indicated a wide range 

for the number of cells required to cause disease, ranged from 105 to 1010 cells. In contrast, 

enumeration of food products indicate much lower numbers of organisms, as low as ten cells, 

were present to cause illness [8, 9].

Most human salmonellosis cases are associated with consumption of contaminated egg, poul-

try, pork, beef, and milk products, which are considered one of the most important reservoirs 

from which Salmonella is passed through the food chain and ultimately transmitted to humans 
[10]. With increasing consumption of these food products, the number of associated salmo-

nellosis continues to be a public health issue all around the world. It is estimated that 95% of 
Salmonella infections are due to the consumption of contaminated foodstuffs, which suggest 
that salmonellae may be present at low levels in food but still capable of causing a significant 
number of infections [11]. Yearly, in the United States, it is estimated that Salmonella is respon-

sible for over a million illnesses, 19,000 hospitalizations, and almost 400 deaths. This is in part 
due to their marked ability to persist in a wide range of varying environmental conditions 

[12]. For example, Salmonella strains can grow in foods stored at low (2–4°C) and high (54°C) 
temperatures [13].

Since Salmonella is a major causative agent for food-associated food-borne illnesses, improv-

ing safety of poultry products by early detection of food-borne pathogens would be consid-

ered an important component for limiting exposure to Salmonella contamination. In order to 

safeguard the food supply and ensure public health, it is essential to establish rapid, reliable, 

and sensitive method for Salmonella detection. In the past two decades, there has been a thrust 

to develop rapid methods for identifying and detecting Salmonella specifically in foodstuffs 
[14–17]. This chapter will focus on the current culture-dependent and culture-independent 

methods for the rapid, accurate detection, identification, and subtyping of salmonellae in 
foodstuffs.

Current Topics in Salmonella and Salmonellosis84



2. Methodologies for detection of Salmonella

2.1. Culture-dependent methods

Current testing of food samples for the presence of salmonellae can be divided into three 

steps: (1) detection of pathogen by plate culture, (2) identification of the isolate and its spe-

cific serovar designation, and (3) subtyping of the isolate for association with salmonello-

sis [18, 19]. These methods rely on traditional bacterial culture procedures that apply serial 

enrichments with increasing selectivity culminating in the isolation of Salmonella on selec-

tive differential agar plates (Figure 1). It always takes up to 5 days to obtain a presumptive 
positive result. Then traditional biochemical testing of nutrient utilization medium is needed 

for confirmation, another few days to complete [20]. Although innovative technologies have 

been applied to subtype salmonellae isolation, at least 24 h is needed for a confirmation of 
Salmonella in multiple analytes. DNA fingerprinting techniques are based on DNA size dif-
ferences on an agarose gel. The digested genomic DNA of target bacteria is separated on an 

agarose gel and then hybridized with complementary sequences for identifying the banding 
pattern. A database of fingerprint species, serovar, and strain identifications is used for com-

parison [21–23]. The fingerprinting methods include pulsed-field gel electrophoresis (PFGE), 
ribotyping, and intergenic sequence (IGS) ribotyping. The use of PFGE has greatly increased 
the ability of track and trace back illness clusters and outbreaks. However, PFGE still requires 
a pure isolate and a minimum of 3 days to complete [24, 25].

Due to its sensitivity, with a limit of detection of 1 cfu, this analytical schema is consid-

ered as the “gold standard” of regulatory agencies (Figure 1). The disadvantages of this 
method are as follows. First, it is time-consuming, taking at least a week for isolation and 

few more days for serotyping and subtyping. The long time frame hampers its applica-

tion in many food commodities, especially fresh products, before they are consumed or 

on hold in warehouses while awaiting test results before they spoil. Second, the operation 

is tedious; the amount of media and numerous plates are required for each sample. The 
procedures are labor-consuming and necessitate large areas of space, particularly in many 

sample detections. Finally, the complex ingredients in foodstuffs, such as indigenous 
microbiota and antimicrobials, make it notably difficult for traditional microbiological 
methods [11, 26–29].

2.2. Culture-independent methods

Recent advances in technology have made the detection of food-borne pathogens more rapid 

and convenient, while achieving improved sensitivity and specificity in comparison to con-

ventional methods. These methods employing newer technologies are generally referred as 

“rapid methods,” which include nucleic acid-based or antibody-based assays that are modi-

fied or improved compared to conventional methods [30–35]. These rapid detection methods 

can be of high value to the food industry by providing several key advantages such as speed, 

specificity, sensitivity, cost-efficiency, and labor efficiency.
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Figure 1. Overview of Bacteriological Analytical Manual (FDA-BAM) workflow for the detection, isolation, and subtyping 
of Salmonella. It takes 5 days for the detection and isolation of Salmonella, and a week more for subsequent confirmation 
and subtyping recent molecular methods, such as MS, WGS, and PCR/qPCR, may shorten the result time [36].
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2.2.1. Polymerase chain reaction (PCR)

The largest advance toward faster detection of salmonellae has been in the realm of molecu-

lar biology, where polymerase chain reaction (PCR) and quantitative PCR (qPCR) are pre-

dominantly being applied as the methods of choice for the detection. Different protocols 
targeting different specific genes or gene regions specific to salmonellae have been published. 
Numerous studies have been conducted to detect and characterize Salmonella in poultry, 

poultry products, and feeds using PCR assays to target selected antibiotic resistance or viru-

lence genes along with genus-, species-, and serotype-specific genes [16, 37–40].

Over the past years, PCR-based methods have advanced to provide high sensitivity for 
Salmonella detection and identification. Aabo et al. used PCR assay for Salmonella detection 

in minced meat and compared this method to a culture-based methodology. The sensitivity 

of the PCR was 89% (85 out of 96 samples), which was much higher than that of the culture 
method (50%, 48 out of 96 samples) [41]. Rychlik et al. established nested PCR with high sen-

sitivity, which has a higher annealing temperature than the primers used in the first PCR, to 
detect Salmonella in chicken feces [42].

As we all know, the quality and quantity of target DNA, PCR template, are important factors 
during the design of a PCR assay. Although well-designed PCR primer and good PCR tem-

plate can bring high specificity of the target detection, it is still not sufficient to overcome the 
side effects of PCR inhibitors in samples, such as denatured proteins, organic chemicals, and 
sucrose. Moreover, the presence of DNA and cells other than those from the targeted organ-

ism can affect the efficiency of the PCR methods. To overcome this, an enrichment step is 
commonly performed to enhance assay sensitivity by ensuring the detection of viable patho-

gens before PCR reaction. Ferretti et al. reported that PCR with a 6 h nonselective enrichment 
could detect various Salmonella serotypes in salami stuffs as low as 1 cfu in 100 ml of food 
homogenate [43, 44]. Myint et al. reported a PCR method for Salmonella detection in con-

taminated poultry tissue samples, and false negative results were obtained without enrich-

ment. However, a positive rate of 90% was observed after enrichment. Generally, culture 
enrichment is recommended in order to distinguish live cells from dead cells before PCR [45]. 

Maciorowski et al. investigated different enrichment times to detect indigenous Salmonella in 

poultry dietary samples using PCR. It was found that it could not be detectable for Salmonella 

with 7 h enrichment, and the sensitivity for detection was 25 and 50% with 13 h enrichment 
and 24 h enrichment, respectively [46].

Improvements have also been made on the basic PCR technology as well. In particular, two 

primary PCR-based methods have emerged over the past several years, such as multiplex 

PCR and real-time quantitative PCR [47, 48]. The current status of the optimization and devel-

opment of these PCR applications is summarized in the following.

Multiplex PCR is a modified PCR method that allows for multiple sequence targets to be 
simultaneously detected within a single reaction. This method has proven useful for the rapid 

identification of multiple pathogens simultaneously in a given sample. Generally, multiplex 
PCR amplifies the target samples using multiple primers in a reaction, which can detect and 
identify several target sequences in Salmonella. Sharma employed a multiplex fluorogenic 
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PCR assay for simultaneous detection of Salmonella and E. coli O157:H7, which was capable 
of detecting as low as 10 cfu/g in meat [49]. Similarly, Kawasaki detected multiple Salmonella 

serotypes, L. monocytogenes, and E. coli O157:H7 simultaneously in enriched meat samples 
using multiplex PCR [48]. Cortez et al. identified Salmonella from chicken abattoirs by multi-
plex PCR. In this paper, 29 out of 288 (~10%) samples were found to be positive for Salmonella 

spp., and 16 (~5.6%) and 7 (~2.4%) samples were characterized as Salmonella Typhimurium and 

Salmonella enteritidis, respectively [50]. Kim differentiated the 30 most prevalent Salmonella 

serotypes in the United States by using two five-plex PCR assays. In this study, primer pairs 
targeting six genetic loci from S. Typhimurium and four from S. Typhi were designed to evalu-

ate various Salmonella serotypes [51]. More recently, Salemis et al. also established two five-
plex assays for the detection of the most common Salmonella in Tunisia as well [52]. Although 

multiplex PCR can simultaneously detect several targets, the primary difficulties are uncom-

mitted, in which reaction conditions are needed optimized as high amounts of DNA in the 
reaction mixture compared to single PCR-based assays. The complex conditions and ingre-

dients in the reaction still increase the difficulty in discrimination between prominent PCR 
product sizes on traditional agarose gel electrophoresis. In practice, cross-reactivity of primer 

pairs and sensitivity limitations associated with the procedure make it still quite challenging 
to routinely use multiplex PCR for reliable simultaneous Salmonella serovar detection [53].

With the appearance of fluorescence technology that endows increased sensitivity (e.g., inter-

calating dyes such as SYBR Green or labeled probes), the limitations of conventional PCR can 
be overcome, such as the errors associated with end-point analyses and lack of quantifica-

tion. The “real-time” aspect of real-time PCR, also referred to as qPCR, technology is linked 
to its ability to label and cumulatively quantify the generated PCR products at each cycle 
throughout the ongoing amplification process. The qPCR has been widely used to quantify 
Salmonella [54–56]. Daum screened nine foodstuffs associated with a Salmonella outbreak in 

Texas using qPCR. It was reported that only one food item was positive for Salmonella [57]. 

Wang et al. reported a qPCR method to detect Salmonella in raw sausage meat with detec-

tion limit of 4 cfu/g [58]. He also used this method to quantify Salmonella detection limits of 

2.5 cfu/25 g for salmon and minced meat, 5 cfu/25 g of chicken meat, and 5 cfu/25 ml for raw 
milk, respectively [59]. Malorny et al. reported a duplex qPCR assay to detect S. enteritidis in 

whole chicken carcass rinses and eggs, with a detection limit of 3 cfu/50 ml of chicken carcass 
rinses and 3 cfu/10 ml of homogenized egg content [60]. Bohaychuk used qPCR for Salmonella 

detection in poultry cecal contents and carcasses with reported sensitivities ranging from 97 
to 100% for various matrices [61]. Although qPCR is an effective tool to detect Salmonella with 

high sensitivity and specificity, it does have several limitations, which are listed in Table 1.

2.2.2. Enzyme-linked immunosorbent assay (ELISA)

Enzyme-linked immunosorbent assay (ELISA)-based approaches are the most preva-

lent antibody-based assay for pathogen detection in foods [62]. This immunological 

approach has been used to detect Salmonella in poultry production (poultry feed, feces, 
litter, carcass rinsing, and water samples) and has provided a better sensitivity and 
shorter time frame than that of culture-based methods [46]. Improvements by combina-

tion with other advanced  technologies have been made to the basic ELISA method for 
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Salmonella detection. For example, incorporation of monoclonal antibodies can improve 

the sensitivity of the assay, and it can quantify Salmonella among poultry probiotic bac-

teria such as Veillonella [63]. In this study, the detection limit for S. Typhimurium was 

determined to be 5.5 × 104 cells/ml in pure culture. Dill combined monoclonal and poly-

clonal antibodies and a commercial filtering system to detect S. Typhimurium cells in a 

chicken rinsate, with detection limit of fewer than 100 S. Typhimurium cells [64]. As the 

advantages of ELISA methods for Salmonella detection in foods and animal feeds, they 

are now widely used for detection of Salmonella in animal-producing foods [65]. The 

comparison of ELISA methods with culture-based methods is performed and listed in 
Table 1.

Method Advantages Disadvantages

Culture-dependent 

methods

—Accurate —Labor and time cost

Single and multiplex 

PCR

— More rapid than culture-based methods  

(<24 h vs. 5 ~ 7 days)
—High specificity and sensitivity
— Multiplex PCR (several pathogens at a time)
—Labor saving
— Multidetection of several Salmonella serotypes 

(5 ~ 6) in one reaction

—Costs more than culture-based methods 

and ELISA
—Difficulty in distinguishing live and 

dead cells

—Technically can be challenging 

(optimized PCR condition)
—Enrichment to detect viable cells
—Requires post-PCR processing of 

products (electrophoresis)
—PCR inhibitors

qPCR —Not influenced by nonspecific amplification; 
amplification can be monitored at real time

—No post-PCR processing of products (gel 
electrophoresis)

—Rapid cycling (25 min)
—Confirmation of specific amplification by 

melting curve

—Specific, sensitive, and reproducible

—Difficulty in multiplex assay
—Need skilled person and support

—High equipment cost
—mRNA lability

—Possibility of cross contamination

Antibody-based 

method

—More rapid than culture-based methods  

(2 days vs. 5 ~ 7 days)
—Can be automated to reduce assay time and 

manual labor input

—Able to handle large numbers of samples

—More specific than cultural methods

—Not high sensitivity

—Difficult to multidetect
—False-negative results

—Difficulty to differentiate damaged or 
stressed cells

—Need to pre-enrichment

—High cross-reactivity with close 
antigens in bacteria

Aptamer-based 

method

—Inexpensive, stable, and can be chemically 

synthesized than antibody

—Time saving (2 h vs. 5 ~ 7 days of culture-based 
methods)

—Automated to reduce manual labor input

—Large numbers of sample detection at one time
—Higher specificity than cultural methods

—High false-positive results
—Difficulty in detecting damaged or 

stressed cells

—Pre-enrichment for production of cell 

surface antigens

—Possibility of cross contamination

Table 1. Advantages and disadvantages of detection methods.
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2.2.3. Aptamer-based detection assay

Besides antibodies, other biomolecules have been investigated to selectively capture and 
enrich Salmonella from cultures, among which aptamer is the most prevalent one [66]. 

Aptamers are single-stranded oligonucleotides, DNA, or RNA that can fold into unique 3D 
structures based on their primary nucleotide sequence, rendering them capable of binding to 
specific ligands, like antibody interacting with an antigen [67]. Aptamers offer some advan-

tages over antibodies in that they are relatively inexpensive to synthesize and they provide 

more batch-to-batch consistency [68]. However, few studies have reported their specific use 
in detecting S. Typhimurium from river water and fecal samples [66, 69]. Bacteriophages have 
also been explored as a means to capture Salmonella cells. Phages may offer some advantages 
over antibodies given their inherent specificity for host cells, their ease of production in bac-

teria versus animals or eukaryotic cell culture, and their relative stability in harsh conditions 

such as pH and temperature extremes [70].

Relative to culture-independent detection, researchers have focused on methods to con-

centrate whole cells within the sample before the pre-enrichment step. The enriched whole 

Salmonella allows for direct detection from food and environmental samples. The enrichment 

steps mainly rely on filtering liquids, rinsates, or mechanically disintegrated (i.e., blended 
or stomached) samples. Therefore, this approach has been widely used in large volumes of 
water, but the testing of food samples was problematic due to the food particles difficult to go 
through filter membranes [71]. To overcome this problem, endopeptidases have been added 

to apply in food samples. These degrade the small, soluble proteins and peptides so that 

they are unable to clog the filter and pass through with the permeate. The United States has 
awarded the method with grant prize. The Food and Drug Administration also recommends 

the method for food safety guard, (http://www.foodsafetychallenge.com), which signified its 
potential to greatly enhance the detection of Salmonella directly from foods.

2.3. Conclusion

In summary, the mentioned methods here have utility advantages for Salmonella detection 

in the food safety sector. It is important to emphasize that none of the methods will be rec-

ommended or even suited for every situation in detecting all food varieties for Salmonella. 

Application to specific food samples will be dictated by method performance. As noted previ-
ously, the performance of these methods depends on several factors, such as matrix-driven 

effects, general specificity and sensitivity, and their technical complexity. Meanwhile, other 
extrinsic factors would affect the performance, including user skill set and technical prowess, 
cost of the equipment, and cost per sample. Hence, the systematic validation to evaluate the 
methods should be considered according to its specific utility and application across the food 
supply.

In order to meet the current requirement of rapid detection, it is clear that several approaches 
have emerged including PCR-based, antibody-based, aptamer-based, and other approaches 

encompassing those stemming from the current genomic era. A clear character of method 

development direction is moving toward greater automation, cost-saving, and time-saving 
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network integration. It is important to mention that outputs from one approach would serve 

to strengthen directly or tangentially other approaches. At last, it seems that a suite of tools is 

emerging for the food safety microbiologist, each with its specific advantages and disadvan-

tages but all with the ability to rapidly and accurately detect Salmonella in certain cases and 

early in its contamination of the human and veterinary food supply.
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