44 research outputs found

    Feature detection in mammographic image analysis

    No full text
    In modern society, cancer has become one of the most terrifying diseases because of its high and increasing death rate. The disease's deep impact demands extensive research to detect and eradicate it in all its forms. Breast cancer is one of the most common forms of cancer, and approximately one in nine women in the Western world will develop it over the course of their lives. Screening programmes have been shown to reduce the mortality rate, but they introduce an enormous amount of information that must be processed by radiologists on a daily basis.Computer Aided Diagnosis (CAD) systems aim to assist clinicians in their decision-making process, by acting as a second opinion and helping improve the detection and classification ratios by spotting very difficult and subtle cases. Although the field of cancer detection is rapidly developing and crosses over imaging modalities, X-ray mammography remains the principal tool to detect the first signs of breast cancer in population screening. The advantages and disadvantages of other imaging modalities for breast cancer detection are discussed along with the improvements and difficulties encountered in screening programmes. Remarkable achievements to date in breast CAD are equally presented.This thesis introduces original results for the detection of features from mammographic image analysis to improve the effectiveness of early cancer screening programmes. The detection of early signs of breast cancer is vital in managing such a fast developing disease with poor survival rates. Some of the earliest signs of cancer in the breast are the clusters of microcalcifications. The proposed method is based on image filtering comprising partial differential equations (PDE) for image enhancement. Subsequently, microcalcifications are segmented using characteristics of the human visual system, based on the superior qualities of the human eye to depict localised changes of intensity and appearance in an image. Parameters are set according to the image characteristics, which makes the method fully automated.The detection of breast masses in temporal mammographic pairs is also investigated as part of the development of a complete breast cancer detection tool. The design of this latter algorithm is based on the detection sequence used by radiologists in clinical routine. To support the classification of masses into benign or malignant, novel tumour features are introduced. Image normalisation is another key concept discussed in this thesis along with its benefits for cancer detection.</p

    Real-time block flow tracking of atrial septal defect motion in 4D cardiac ultrasound

    No full text
    Real-time cardiac ultrasound allows monitoring the heart motion during intracardiac beating heart procedures. Our application assists atrial septal defect (ASD) closure techniques using real-time 3D ultrasound guidance. One major image processing challenge is the processing of information at high frame rate. We present an optimized block flow technique, which combines the probability-based velocity computation for an entire block with template matching. We propose adapted similarity constraints both from frame to frame, to conserve energy, and globally, to minimize errors. We show tracking results on eight in-vivo 4D datasets acquired from porcine beating-heart procedures. Computing velocity at the block level with an optimized scheme, our technique tracks ASD motion at 41 frames/s. We analyze the errors of motion estimation and retrieve the cardiac cycle in ungated images. © 2007 IEEE

    Automatic analysis of pediatric renal ultrasound using shape, anatomical and image acquisition priors.

    No full text
    n this paper we present a segmentation method for ultrasound (US) images of the pediatric kidney, a difficult and barely studied problem. Our method segments the kidney on 2D sagittal US images and relies on minimal user intervention and a combination of improvements made to the Active Shape Model (ASM) framework. Our contributions include particle swarm initialization and profile training with rotation correction. We also introduce our methodology for segmentation of the kidney's collecting system (CS), based on graph-cuts (GC) with intensity and positional priors. Our intensity model corrects for intensity bias by comparison with other biased versions of the most similar kidneys in the training set. We prove significant improvements (p < 0.001) with respect to classic ASM and GC for kidney and CS segmentation, respectively. We use our semi-automatic method to compute the hydronephrosis index (HI) with an average error of 2.67 +/- 5.22 percentage points similar to the error of manual HI between different operators of 2.31 +/- 4.54 percentage points
    corecore