29 research outputs found

    RHODOCOCCUS EQUI INFECTION AND INTERFERON-GAMMA REGULATION IN FOALS

    Get PDF
    Rhodococcus equi (R. equi) is one of the most serious causes of pneumonia in young foals. The clinical disease is of great concern to breeding farms worldwide due to the impact of mortality on economic losses. While adult horses are resistant to R. equi, foals exhibit a distinct age-associated susceptibility. The mechanism underlying this susceptibility in foals is not well understood. Interferon-gamma (IFNg) plays an important role in the clearance of R. equi, but its expression is impaired in neonatal foals. Moreover, the regulation of this age-related IFNg expression in foals remains unknown. In humans, IFNg expression has been shown to be regulated by DNA methylation, lymphoproliferation, and influenced by environmental exposure. Therefore, we hypothesized that environmental exposure promotes IFNg expression through regulation of DNA methylation and lymphoproliferation. The objectives were: (1) to estimate the relevance of IFN-g production and R. equi infection in foals; (2) investigate the role of lymphoproliferation and DNA methylation in the regulation of IFN-g expression in foals; (3) to evaluate the effect of environmental exposure on IFN-g expression by housing foals in a barn environment verses pasture.; (4) to investigate the effect of environment exposure on antigen-presenting cells (APC), which sensor the environmental antigens and modulate IFN-g production by T cells. The results demonstrated that the IFN-g expression was inversely correlated with the age-related susceptibility to R. equi infection. lymphoproliferation promoted IFN-g expression in foals, whereas, DNA methylation repressed IFN-g expression. The IFN-g expression was augmented in foals exposed to the barn air which contained higher numbers of aerosol miroorganisms. DNA on the IFN-g promoter was demethylated and the lymphoproliferative activity was elevated in foals with barn-air exposure. The barn-air exposure also promoted the maturation and activation of APC to prime IFN-g expression by T cells in foals. Overall, this body of work demenstrated a relationship between IFN-g expression and R. equi infection, provided novel information on mechanisms that regulate IFN-g expression, and identified the effect of environment on mechanisms responsible for IFN-g expression

    Homocysteine Aggravates Intestinal Epithelial Barrier Dysfunction in Rats with Experimental Uremia

    Get PDF
    Background/Aims: Previous studies have shown that homocysteine (Hcy) is an important intestinal-derived uremic toxin. However, whether Hcy is involved in the epithelial barrier dysfunction observed in uremia remains unclear. This study aimed to investigate the effect of Hcy on intestinal permeability and intestinal barrier structure and function in adenine-induced uremic rats. Methods: Sprague-Dawley rats were divided into five groups: normal control (group NC), Hcy (group H), uremia (group U), uremia + Hcy (group UH), and uremia + Hcy + VSL#3 (group UHV). Experimental uremia was induced by intragastric adenine administration, and Hcy was injected subcutaneously. The animal models were assessed for renal function and pathological tissue staining. The pathological changes of intestinal tissue were observed by hematoxylin and eosin staining and electron microscopy. The serum and intestinal tissue levels of Hcy, interleukin (IL)-6, tumor necrosis factor (TNF)-α, superoxide dismutase (SOD), and malondialdehyde (MDA) as well as serum endotoxin and intestinal permeability were assessed. The levels of the tight junction proteins claudin-1, occludin, and zonula occludens-1 (ZO-1) were assessed by western blotting. Results: Blood analyses and renal pathology indicated that experimental uremia was induced successfully. Pathological damage to intestinal structure was most obvious in group UH. Serum and tissue Hcy, serum endotoxin, and intestinal permeability were significantly elevated in group UH. The protein levels of claudin-1, occludin, and ZO-1 were decreased to various degrees in group UH compared with groups NC, H, and U. The serum and tissue levels of IL-6, TNF-α, and MDA were significantly increased, while SOD activity was markedly decreased. Supplementation with the probiotic VSL#3 improved these parameters to various degrees and up-regulated the abundance of tight junction proteins, which indicated a role for Hcy in the increase of intestinal permeability and destruction of the epithelial barrier in uremia. Conclusion: Hcy aggravates the increase of intestinal permeability and destruction of the epithelial barrier by stimulating inflammatory and oxidative damage. Probiotic administration can ameliorate this damage by reducing the levels of Hcy-induced inflammation and oxidation

    Odor and Odorous Chemical Emissions from Animal Buildings: Part 2—Odor Emissions

    Get PDF
    This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions. Odor emissions from two animal species (dairy and swine) from four sites with nine barns/rooms (two dairy barns in Wisconsin, two dairy barns and two swine rooms in Indiana, and three swine barns in Iowa) during four cycles (13-week periods) were measured. Odor samples were analyzed in three olfactometry laboratories and no significant difference was found among these laboratories. The highest ambient odor concentrations and barn odor emissions were measured for the Iowa swine site. The most intense odor and the least pleasant odor were also measured for this site. Ambient odor concentrations were the lowest for the Wisconsin dairy site. But the lowest barn odor emission rates were measured for the Indiana dairy site. Significantly higher odor emissions were measured in summer

    Study on the Effect of Feiji Decoction for Soothing the Liver Combined with Psychotherapy on the Quality of Life for Primary Lung Cancer Patients

    No full text
    Background and objective Lung cancer is the most common type among all malignant tumors, bringing huge pain and mood disorders to patients suffering from it. This study aims to evaluate the effect of the Feiji Decoction for soothing the liver combined with psychotherapy for depression and anxiety on patients with primary lung cancer. It also aims to further explore the relationship between depression and anxiety. Methods A total of 118 patients with primary non-small cell lung cancer were randomly divided into two groups. The combined therapy group consisted of 57 patients who were treated with Feiji Decoction for soothing the liver and psychotherapy combined with chemotherapy. The control group consisted of 61 patients who were treated with chemotherapy only. Both groups were observed for two treatment courses. The Zung Self-reported Depression Scales (SDS) and Zung Self-reported Anxiety Scales (SAS) were used to assess the patients’ psychology status in both groups before and after treatment scales. Results After treatment, the depression and anxiety scores of the therapy group remarkably decreased compared with scores before treatment, indicating a statistical significance (P<0.01). In comparison, after treatment, the depression and anxiety scores of the control group significanfly increased compared with scores before treatment, indicating a statistical significance (P<0.01) as well. The depression and anxiety scores of the therapy group significanfly decreased compared with scores of the control group, showing statistical significance (P<0.01). Thus, depression and anxiety score has a close co-relationship, showing significant positive correlation (P<0.01). Conclusion Feiji Decoction for soothing the liver combined with psychotherapy can alleviate depression and anxiety in patients with primary lung cancer. This therapy has good clinical therapeutic effect

    Identification and genetic characterization of a novel parvovirus associated with serum hepatitis in horses in China

    No full text
    Abstract A novel equine parvovirus, equine parvovirus-hepatitis (EqPV-H), was first discovered in a horse that died of equine serum hepatitis in the USA in 2018. EqPV-H was shown to be a novel etiological agent associated with equine serum hepatitis. Following this initial report, no additional studies on EqPV-H have been published. In this study, a total of 143 serum samples were collected from racehorses at 5 separate farms in China and were analyzed to detect EqPV-H DNA via nested PCR. The results indicated a high prevalence of EqPV-H (11.9%, 17/143) in the studied animals. In addition, a remarkably high coinfection rate (58.8%, 10/17) with 2 equine flaviviruses (equine hepacivirus and equine pegivirus) was observed in the EqPV-H positive equines. However, all equines tested negative for Theiler’s disease-associated virus, an etiological agent associated with equine serum hepatitis. The genomes of six field EqPV-H strains were sequenced and analyzed, with the results indicating that the Chinese EqPV-H strains have low genetic diversity and high genetic similarity with the USA EqPV-H strain BCT-01. A phylogenetic analysis demonstrated that the Chinese EqPV-H strains clustered with BCT-01 in the genus Copiparvovirus but were distantly related to another equine parvovirus identified in horse cerebrospinal fluid. In addition, liver enzyme levels were detected in the EqPV-H positive serum samples, and all the values were in the normal range, indicating that infection can occur without concurrent liver disease. This study will promote an understanding of the geographical distribution, genetic diversity, and pathogenicity of EqPV-H

    Metabolite Profiling of Feces and Serum in Hemodialysis Patients and the Effect of Medicinal Charcoal Tablets

    No full text
    Background/Aims: Recently, the colon has been recognized as an important source of various uremic toxins in patients with end stage renal disease. Medicinal charcoal tablets are an oral adsorbent that are widely used in patients with chronic kidney disease in China to remove creatinine and urea from the colon. A parallel fecal and serum metabolomics study was performed to determine comprehensive metabolic profiles of patients receiving hemodialysis (HD). The effects of medicinal charcoal tablets on the fecal and serum metabolomes of HD patients were also investigated. Methods: Ultra-performance liquid chromatography/mass spectrometry was used to investigate the fecal and serum metabolic profiles of 20 healthy controls and 31 HD patients before and after taking medicinal charcoal tablets for 3 months. Results: There were distinct metabolic variations between the HD patients and healthy controls both in the feces and serum according to multivariate data analysis. Metabolic disturbances of alanine, aspartate and glutamate metabolism, arginine and proline metabolism figured prominently in the serum. However, in the feces, alterations of tryptophan metabolism, lysine degradation and beta-alanine metabolism were pronounced, and the levels of several amino acids (leucine, phenylalanine, lysine, histidine, methionine, tyrosine, and tryptophan) were increased dramatically. Nineteen fecal metabolites and 21 serum metabolites were also identified as biomarkers that contributed to the metabolic differences. Additionally, medicinal charcoal treatment generally enabled the serum and fecal metabolomes of the HD patients to draw close to those of the control subjects, especially the serum metabolic profile. Conclusion: Parallel fecal and serum metabolomics uncovered the systematic metabolic variations of HD patients, especially disturbances in amino acid metabolism in the colon. Medicinal charcoal tablets had an impact on the serum and fecal metabolomes of HD patients, but their exact effects still need to be studied further

    Performance evaluation of a wood-chip based biofilter using solid-phase microextraction and gas chromatography–mass spectroscopy–olfactometry

    Get PDF
    A pilot-scale mobile biofilter was developed where two types of wood chips (western cedar and 2 in. hardwood) were examined to treat odor emissions from a deep-pit swine finishing facility in central Iowa. The biofilters were operated continuously for 13 weeks at different air flow rates resulting in a variable empty bed residence time (EBRT) from 1.6 to 7.3 s. During this test period, solid-phase microextraction (SPME) PDMS/DVB 65 μm fibers were used to extract volatile organic compounds (VOCs) from both the control plenum and biofilter treatments. Analyses of VOCs were carried out using a multidimentional gas chromatography–mass spectrometry–olfactometry (MDGC–MS–O) system. Results indicated that both types of chips achieved significant reductions in p-cresol, phenol, indole and skatole which represent some of the most odorous and odor-defining compounds known for swine facilities. The results also showed that maintaining proper moisture content is critical to the success of wood-chip based biofilters and that this factor is more important than media depth and residence time.This is a manuscript of an article published as Chen, Lide, Steven J. Hoff, Jacek A. Koziel, Lingshuang Cai, Brian Zelle, and Gang Sun. "Performance evaluation of a wood-chip based biofilter using solid-phase microextraction and gas chromatography–mass spectroscopy–olfactometry." Bioresource Technology 99, no. 16 (2008): 7767-7780. DOI: 10.1016/j.biortech.2008.01.085. Posted with permission.</p
    corecore