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ABSTRACT OF DISSERTATION 

 

 

 

RHODOCOCCUS EQUI INFECTION AND INTERFERON-GAMMA REGULATION 

IN FOALS  

 

 

  Rhodococcus equi (R. equi) is one of the most serious causes of pneumonia in 

young foals. The clinical disease is of great concern to breeding farms worldwide due to 

the impact of mortality on economic losses.  While adult horses are resistant to R. equi, 

foals exhibit a distinct age-associated susceptibility. The mechanism underlying this 

susceptibility in foals is not well understood. Interferon-gamma (IFNplays an 

important role in the clearance of R. equi, but its expression is impaired in neonatal foals.  

Moreover, the regulation of this age-related IFN expression in foals remains unknown.  

In humans, IFN expression has been shown to be regulated by DNA methylation, 

lymphoproliferation, and influenced by environmental exposure. Therefore, we 

hypothesized that environmental exposure promotes IFN expression through regulation 

of DNA methylation and lymphoproliferation. The objectives were: (1) to estimate the 

relevance of IFN- production and R. equi infection in foals; (2) investigate the role of 

lymphoproliferation and DNA methylation in the regulation of IFN- expression in foals; 

(3) to evaluate the effect of environmental exposure on IFN- expression by housing foals 

in a barn environment verses pasture.; (4) to investigate the effect of environment 

exposure on antigen-presenting cells (APC), which sensor the environmental antigens 

and modulate IFN- production by T cells. The results demonstrated that the IFN- 

expression was inversely correlated with the age-related susceptibility to R. equi infection. 

lymphoproliferation promoted IFN- expression in foals, whereas, DNA methylation 

repressed IFN- expression. The IFN- expression was augmented in foals exposed to the 

barn air which contained higher numbers of aerosol miroorganisms. DNA on the IFN- 

promoter was demethylated and the lymphoproliferative activity was elevated in foals 

with barn-air exposure. The barn-air exposure also promoted the maturation and 

activation of APC to prime IFN- expression by T cells in foals. Overall, this body of 

work demenstrated a relationship between IFN- expression and R. equi infection, 

provided novel information on mechanisms that regulate IFN- expression, and identified 

the effect of environment on mechanisms responsible for IFN- expression. 



KEY WORDS: Foal, Interferon-gamma, Regulation, Rhodococcus equi, Environment 
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CHAPTER ONE 

Introduction & Literature Review 

INTRODUCTION 

The fetal immune system develops in a sterile and protected environment, and 

therefore lacks antigenic experience.  Soon after birth, the newborn is exposed to the 

"hostile world" of bacteria, viruses, fungi, and parasites. The exposure to these microbes, 

on the one hand, challenges the health of the neonates which requires the body to 

immediately defend itself; on the other hand, sharpens the maturity of the immune 

response in neonates (Ygberg and Nilsson, 2012).  In humans, the immunologic 

competence of the neonate progresses rapidly in the first three months of life (PrabhuDas 

et al., 2011).  Likewise, the immunity is immature in neonatal foals and the immunity 

develops over time (Giguere and Polkes, 2005a).  However, the effect of environment on 

the maturation of the immunity in foals is completely unknown.  

The immaturity of the immune response in foals is considered to be responsible 

for their susceptibility to bacterial and viral infection, such as Rhodococcus equi (R. equi).  

R. equi, an intracellular bacteria, is one of the most important causes of high morbidity 

respiratory disease in foals, causing great concern to breeding farms (Machangu and 

Prescott, 1991). It inflicts a significant economic impact on the horse industry, both in the 

Americas and worldwide (Prescott, 1991). The costs of treatment and foal losses from 

infection on farms with endemic disease can be substantial.  Thus, it is very important to 

understand what part of the naivety of the neonatal immune response is responsible for 

this susceptibility.  
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While both humoral and cell-mediated immune response play an important role in 

the defense against R. equi infection, the cellular immune response is pivotal in clearance 

of intracellular pathogens. Interferon-gamma (IFN-is a critical cytokine for innate and 

adaptive cell-mediated immunity against intracellular bacterial infections. It promotes T 

and B cell differentiation, activates cytotoxic T cell activities, and enhances microbicidal 

function of macrophage (M). However, IFN- expression is impaired in neonates of 

most species (Vuillermin et al., 2009a), including foals (Breathnach et al., 2006b). This 

reduced expression is associated with an increased risk for intracellular bacterial 

infections, such as those caused by R. equi.  However, the underlying regulatory 

mechanism of IFN- expression in foals remained to be investigated.   

The expression of IFN- mRNA correlates with the protein production in foals, 

indicating that its expression is regulated at the transcriptional level (Breathnach et al., 

2006b).  The mechanism underling this impaired IFN-expression is unknown in foals.  

Gene transcription begins with the transcription factors (TF) binding to the elements on 

the promoter region, followed by recruitment of RNA polymerase and initiation of 

transcription.  Studies in humans and mice have shown that transcription regulation of 

IFN- gene is controlled at two levels: the availability of TFs, and the accessibility of the 

elements in the promoter region (Jones, 2012; Wilson and Merkenschlager, 2006). The 

DNA methylation suppressively regulates gene expression which creates the “closed” 

structure of chromatin and prevents the TF accessibility (Wilson and Merkenschlager, 

2006).  On the contrary, the “open” structure and demethylation of DNA indicates an 

active transcription of the gene, which can be induced through lymphocyte proliferation 

and differentiation (Wilson and Merkenschlager, 2006). These inheritable changes of 
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gene expression is derived from DNA modification or chromatin remodeling rather than 

changes in the DNA sequence, termed epigenetic regulation.  

The epigenetic regulation of IFN- expression is postulated to be induced by 

environmental exposure (Kuriakose and Miller; Miller and Ho, 2008; Vuillermin et al., 

2009a). IFN- expression in the early life of infants is influenced by exposure to 

environmental microbes (Gereda et al., 2000b; Roponen et al., 2005a). However, the 

underlying mechanisms leading to this effect remain to be unveiled. The specific antigen-

presenting cells (APC) recognize environmental antigens and present these to T cells 

which primes and modulates the  IFN- expression by the T cells (Paul, 2003).  It was 

recently found that exposure to various environmental antigens promoted the function of 

APC in mice and rats (Debarry et al., 2007; Peters et al.; Vogel et al., 2008b).  And the in 

vitro stimulation with environmental microbial components appeared to activate and 

promote the maturation of APC in foals (Flaminio et al., 2007; Merant et al., 2009b). 

However, the effect of environment on the maturation of APC in foals is unknown.  

This chapter provides basic background describing the development of 

immunocytes and respiratory immunity to R. equi infection in foals, and the regulation of 

IFN- expression. The overall hypothesis of the following chapters is that environmental 

exposure promotes IFN- expression through regulation by DNA methylation and 

lymphoproliferation.  The specific aims of the following chapters were to: 

1) Evaluate the relevance of IFN-expression and the age-associated 

susceptibility to R. equi in foals (Chapter 2). 
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2) Characterize the role of proliferation on the regulation of IFN-expression in 

foals (Chapter 3).   

3) Identify the  role of DNA methylation on the regulation of IFN-expression 

in foals (Chapter 4) 

4) Estimate the effect of environment exposure on IFN-production (Chapter 5). 

5) Investigate the environment effect on APC phenotype and function (Chapter 

6). 

6) Conclusions and Future Directions (Chapter 7).  



 

5 
 

LITERATURE REVIEW 

Immunity development in foals 

 The immune response of the horse is composed of both innate and adaptive 

systems to defend against infections.  However, the immune response of neonatal foals is 

born immature compared with that of adult horses, like in other species (Tizard, 2009).  

The inability to mount an adult-like immune response is responsible for the susceptibility 

to many pathogen infections in neonates.  Studies in humans indicate that the immunity 

of infants undergo a gradual progression toward maturation. Likewise, the foal immune 

system gradually undergoes maturation with exposure to an abundant and diverse 

population of microbial components in the environment. These maturation events include 

the expansion of immunocytes such as lymphocytes; and a massive increase of 

immunological molecules produced by those cells, such as immunoglobulins and 

cytokines. To promote the maturation procedure, as well as to promote IFN- expression, 

the postnatal development of the immunocytes in foals needs to be illustrated. 

 A wide range of distinct cell types comprise the immune system, each of which 

plays an important role. The lymphocytes engage in a central role in adaptive immunity 

since they are the cells that determine the specificity of immunity-specific antibody 

production, cytokine secretion, and cytotoxicity. It is their response that directs the 

effector limbs of the immune response, humoral immune response and cell-mediated 

immune response.  Other types of cells interact with lymphocytes either in the way of 

antigen presentation or mediation of immunologic functions.  These cells include: cells 

that eliminate invaders and initiate adaptive immunity during innate immunity, such as 
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granulocytes (neutrophils, eosinophils, and basophils); and cells that present antigens to 

lymphocytes, such as dendritic cells (DC) and monocytes (Mo)/macrophages (M.   

Lymphocytes  

Previous studies in the foal suggest an age-related maturation of lymphocytes 

(Flaminio et al., 2000b). The appearance of lymphocytes in the peripheral blood of the 

fetus begins at about 90 days, presumably circulating to populate the various lymphoid 

tissues from early developed thymus (Mackenzie, 1975). The majority of lymphocytes 

are present in peripheral blood by day 120, and their proliferative response to Pokeweed 

Mitogen (PWM) is low at this time.  The significant immune response of B cells to PWM 

can be obtained by day 140 (Perryman et al., 1980).   

  Foals are born with comparable lymphocyte counts to that of adults in peripheral 

blood (Flaminio et al., 2000b; Smith et al., 2002). The absolute number of lymphocytes 

increase significantly over time after birth, with an increase of 2.5 times by the third 

month of age (Flaminio et al., 2000b).  The changes in total lymphocyte populations 

reflect an antigenic stimulation of lymphocyte proliferation and differentiation following 

environmental exposure (Berek and Ziegner, 1993). The age-related development of 

lymphocytes in fetus and foals are reviewed as follows, including B and T cells. 

B cells and immunoglobulin 

B cells are a pivotal type of cell for humoral immune response in term of 

immunoglobulin (Ig) secretion, including IgA, IgG, IgM, IgD and IgE. In adult horses, 

IgG is the principal plasma Ig, representing 80% of the total Ig repertoire. Four 
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subclasses of IgG have been identified by this point, IgGa (IgG1), IgGb (IgG4/7), IgGT 

(IgG3/5) and IgGc (IgG6) (Wagner, 2006).   

During equine fetal development, the B cells delvelope to become 

immunologically competent. B cells progress from the liver to the bone marrow, and onto 

the spleen by 90-120 days of gestation (Butler et al., 2009; Sinkora et al., 1998; 

Tallmadge et al., 2009). Among all types of Ig, only IgM can be detected in the fetal 

spleen around 90-120 days of gestation (Tallmadge et al., 2009) by which point it obtains 

the ability of class switching at this time.  Specific responses to utero vaccination have 

been detected in equine fetuses around 180-200 days of gestation (Martin and Larson, 

1973; Mock et al., 1978; Morgan et al., 1975).  Meanwhile, the memory of B cells are 

possibly developed (Tallmadge et al., 2009). Therefore, the capacity of B cells to respond 

to stimulation is considered to be competent at birth (Giguere and Polkes, 2005a).   

After birth, the B cell counts in the blood and the proportion in peripheral blood 

mononuclear cells (PBMC) increase significantly until 3 months of age (Cebulj-Kadunc 

et al., 2003; Flaminio et al., 2000b; Smith et al., 2002). The numerical increase of 

peripheral B cells reflects a B cell expansion as a response to environmental exposure 

(Butler and Sinkora, 2007).  The distribution of subtypes of B cells also exhibits an age-

association. Foals are born with a majority of IgM
+
 B cells and limited IgD

+
 and IgA

+
 B 

cells in the spleen (Sheoran et al., 2000; Tallmadge et al., 2009). Until 1-3 months of age, 

B cells in germinal centers present large numbers of IgM
+
, IgGa

+
, IgGb

+
, IgGT

+
 B cells 

and very rare IgA
+
 B cells, whereas in adult horses all IgG types of B cells and IgA

+
 B 

cells are abundant in germinal centers (Tallmadge et al., 2009). Similarly, in lymph nodes, 

there are a majority of IgM
+
 B cells in neonatal foals, some IgGa

+
 and IgGb

+
 B cells and 
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very few IgGT
+ 

and IgA
+
 B cells, whereas adult horses have an abundance of all types of 

B cells (Tallmadge et al., 2009). In addition, IgE
+
 B cells appear in peripheral blood only 

in foals 2.5-5 months old and they present in lung and skin tissue at this time point (Marti 

et al., 2009; Wagner, 2006, 2009).   

The capacity of endogenous Ig generation by B cells also exhibited an age-

dependant phenomenon. In the serum of pre-suckle neonatal foals, IgM concentration is 3 

times lower,  total IgG concentration is 300 times lower, IgGa concentrations are 70 

times lower and IgGb concentration 120 times lower, compared to adult horses 

(Tallmadge et al., 2009). The onset of endogenous Ig is also delayed and exhibits an age-

related increase phenomenon.  In addition, the endogenous serum IgE is detectable until 

5-6 months in foal peripheral blood (Marti et al., 2009; Wagner, 2006, 2009).   

While B cells are immunologically competent, their production of endogenous Ig 

or antibodies is defective in neonatal foals, though increasing gradually over time.  Thus 

the passive immunity transferred from the mare is critical for foals to conquer most 

infections.  Given the epitheliochorial placentation of mares, maternal Ig is rarely 

transferred to the fetus.  The transfer of passive immunity is mainly through colostrum. 

The concentrations of Ig in colostrum rank as IgG (IgGb> IgGa> IgGT)>IgA( negligible 

within 12 to 24hrs ) > IgM (Sheoran et al., 2000).  Neonatal absorption of 

immunoglobulin occurs within 2 hrs aftrer birth by unselective pinocytosis through 

specialized enterocytes at birth rapidly.  The maternal immunoglobulins can be detected 

within 4-6 hrs.  The IgGa peaks at 18 -24 hrs in the foals.  Thereafter, the maternal 

immunoglobulins decrease gradually in the foals, and disappear after 1 month for IgA 

and IgM, and 6 month for IgGa, IgGb and IgGT (Table 1.1). 
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With the decrease of immunoglobulin from passive transfer and the gradual 

increase of endogenous immunoglobulin over time in foals, the serum IgM production 

reaches the adult level within 1 month of age; the IgG, IgGT, and IgA catch the adult 

level at age 3 months, followed by adult-level of IgE in foals of 8 months old.  However, 

the production of IgGb by B cells in foals catches up with adult level by 1 year of age 

(Table 1.1).  

Table 1.1 Immunoglobulin in foal serum  

Immunoglobulin 

IgG IgA IgM IgE 

IgGa IgGb IgGT    

Half-life  (days) 18  32  21  3-5  3-5  ? 

Disappearance of maternal antibodies (months) 6  6  6  1 1 0 

Reach adult level at age (months) 3 12 3 3  1 8 

Reference: (Wagner et al., 2006); (Giguere and Polkes, 2005a; Sheoran et al., 2000; 

Tallmadge et al., 2009) 

Antibodies play a critical role in resistance to bacterial infection by neutralization 

and opsonization; the period of lacking the protection provided by maternal and 

endogenous antibodies may be, in part, responsible for the increased susceptibility of 

foals to infections.  The phenomenon that the nadir of serum IgG concentration in foals 

from age 2-3 months precedes a period of increased incidence of bacterial respiratory 

infections (Hoffman et al., 1993) indicates a lack of serum IgG and may contribute in part 

to the susceptibility to infection because the serum IgG typically increases during this 

period (Astier et al., 1999). This inability of B cells to produce these Ig, even though B 

cells were born with immunocompetent, is proposed to be caused by the incompetence of 
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another type of lymphocyte, T cells, which is required for maturation of B cells and 

differentiation of plasma cells (Giguere and Polkes, 2005a).   

T cells  

T cells are an essential component of the cell-mediated adaptive immune response. 

The helper and cytotoxic T cells are the two main types of effector T cells protecting 

against infections by means by cytokine secretion and lysis of infected cells. They are 

characterized of specific antigen recognization by TCR and CD4 or CD8.  The CD4 T 

cells are responsible for coordinating the immune response to intracellular pathogens and 

for providing help to B cells, whereas CD8 T cells lyse the pathogen infected cells (Paul, 

2003). 

The functional T lymphocytes are present in equine fetus by day 100 of gestation 

and significant responses can be obtained  by day 140, represented by proliferation in 

response to phytohaemagglutinin (PHA) stimulation (Perryman et al., 1980).  After birth, 

with environmental exposure, T cells undergo a cell expansion as that in B cells. The 

absolute number of T cells in peripheral blood from foals increases with age (Flaminio et 

al., 1999; Smith et al., 2002), although the proportion of T cells in PBMCs stays 

consistent in foals over time (Flaminio et al., 1999).  The numerical increase of the T 

cells may be mainly due to the increase of CD8 T cells, since the proportion of CD8 T 

cells increases nearly 5-fold by the fourth month of age, whereas CD4 T cells remain 

constant with age (Flaminio et al., 2000b). The significantly higher proliferative activity 

of the peripheral T cells in response to concanavalin A (ConA) in the neonatal foals 

compared to the adults (Baker et al., 2011; Flaminio et al., 2000b; Sun et al., 2012) also 

reflects a possible T cell expansion in foals in response to environmental microbes.     
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The function of T cells can also be evaluated over time by  their cytokine 

production. Cytokines are potent regulators of innate and adaptive immunity. The 

expression of IFN-, IL-4, IL17 and IL-10 represent the function of the type 1 helper T 

(Th1), type 2 helper T (Th2) and type 17 helper T (Th17) cells, and regulatory T cells 

(Treg), respectively (Paul, 2003). The impaired expression of all these cytokines by 

peripheral lymphocytes in response to mitogen in neonatal foals (Breathnach et al., 2006a; 

Nerren et al., 2009a; Wagner et al., 2010) compared to adults indicates a universally 

impaired helper T cell function in foals.    

Among all the cytokines, the production of IFN- is thought to be an indicator of 

cell mediated immune response. The level of IFN- in serum from neonatal foals is 

extremely low compared with that of adults (Rizos et al., 2007). The mitogen-stimulated 

IFN- expression in peripheral blood lymphocytes also appears  defective in neonatal 

foals, (Breathnach et al., 2006a).  Moreover, the specific IFN- expression is not 

detectable in PBMCs with in vitro pathogen stimulation in neonatal foals. The in vitro 

IFN- expression is also negligible in neonatal foals with pathogen challenge compared 

to adult horses (Butler et al., 2006; Paillot et al., 2005; Paillot et al., 2007).  Similar age-

related limited IFN- expression is also found in humans (Gasparoni et al., 2003), 

bovines (Horiuchi et al., 2007) and pigs (Butler and Sinkora, 2007). This impaired IFN- 

expression is considered to be responsible for foals’ susceptibility to viral and 

intracellular bacterial infection (Breathnach et al., 2006a). 

The IFN- expression by mitogen-stimulated cytotoxic T lymphocytes (CTLs) 

also shows an impaired function in neonatal foals compared to adults (Wagner et al., 
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2010). In addition, the specific IFN- expression by CD8 T cells in response to pathogen 

stimulation is reduced in neonatal foals. The reduced level of specific IFN- expression 

suggests an impaired cytotoxicity of CD8 T cells (Paillot et al., 2005).  The in vitro 

stimulated cytotoxicity of CD8 T cells is not detectable in neonatal foals (Patton et al., 

2005).  This cytotoxic T-lymphocyte mediated lysis (CTL) starts to appear in foals at 3 

weeks; it increases but still remains deficient in 6-week-old foals; the significant CTL 

activity appears in 8-week-old foals (Patton et al., 2005).  The impaired cytotoxicity of 

CD8 T cells in foals is also indicated by the reduced cytotoxicity of lymphokine-activated 

killer (LAK) cells in yearlings compared with adult horses (Liu et al., 2011a).  The lack 

of LAK cytotoxicity in foals is also reflected by the impaired expression of Granzyme B 

(GrzB), which induces apoptosis of infected cells (Liu et al., 2011a).   

There are other subtypes of T cells, such as Natural Killer T (NKT) cells and T 

cells.  NK cells, like NKT cells, are capable of rapid induction and secretion of IFN- 

upon infection as effector cells of innate immunity (Schoenborn et al., 2007). The T 

cells are the first line of defense and bridge between innate and adaptive responses 

(Holtmeier and Kabelitz, 2005). However, the information on development of these cells 

in foals is limited. The proportion of T cells in peripheral blood of cows and pigs is 

extremely low in neonates compared with adults.  The numbers of these cells in horses 

may likewise be limited in foals.   

Antigen-presenting cells (APC) 

The activation of lymphocytes is primed and modulated by APC, which function 

as a bridge linking innate and adaptive immune response. The APC process and present 

antigens from the environment to T cells, which then direct the pattern of adaptive 
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immune response toward either Th1, Th2, Th17 or Treg by communication with T cells 

via surface molecules and production of cytokines (Paul, 2008).  

There are two types of specific APCs, including M (in tissue) and DCs which are 

derived from blood Mo moving into tissues. The DC is a critical specific APC, playing a 

key role in the innate as well as specific immune response.  It acts as a sensor for 

potentially dangerous microbes, either by directly recognizing microbial components or 

by receiving signals formulated by the innate immune system that is exposed to microbes. 

DCs decode and integrate such signals and ferry this information to adaptive immune 

cells. Thus, the type of adaptive immune responses is highly dependent on the nature of 

the activating stimuli that DCs receive from the innate immune system (Paul, 2003).  To 

elicit anti-microbial immunity, DCs undergo a complex process of maturation, from an 

antigen-capturing phenotype to an antigen-presenting phenotype, such as the loss of 

endocytic/phagocytic receptors; up regulation of costimulatory molecules, such as CD40, 

CD80, and CD86;  translocation of MHC class II (MHC II) compartments to the cell 

surface;  and secretion of cytokines that differentiate and polarize the attracted immune 

effectors (Paul, 2008).  While the DC play the key role in induction and modulation of 

adaptive immune response, the phenotype of neonatal DCs is different from adults and 

the function of antigen presentation is immature in neonatal humans and mice, such as 

lower expression of costimulatory molecules on DC surface and lower cytokine 

expression in response to stimulation (Willems et al., 2009b).  However, the analysis of 

neonatal DCs in horses was limited by the antibodies availability. The similar immaturity 

and phenotype difference was also observed by study of monocyte derived DCs (MoDCs) 

(Merant et al., 2009b), although the MoDCs in foals express similar levels of 
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costimulatory molecules on the cell surface, such as CD40 (Flaminio et al., 2009), and 

comparable cytokine expression such as IL-12, IL-15 and IL-18 (Flaminio et al., 2007; 

Flaminio et al., 2009; Merant et al., 2009b). It was observed that in foals versus adult 

horses: (1) the antigen-presenting associated molecules, such as MHC II, CD1b and 

CD1b
+
/CD86

+
 on MoDCs were lower (Flaminio et al., 2009; Merant et al., 2009b); (2) 

the cytokine production was reduced, such as TNF  (Merant et al., 2009b); (3) responses 

to multiple stimuli, such as LPS and CpG-ODN, is impaired as no IL-12 and IFN- is 

produced (Flaminio et al., 2007). Additionally, the blood Mo in neonatal foals exhibits a 

biased IL-10 expression in response to IFN- and LPS stimulation compared to that of 

adults (Sponseller et al., 2009a).  

Mderived from Mo is an important antigen scavenger in tissue. Aside from 

sustained and repeated phagocytic activity, compared with neutrophils, M can process 

and present the antigens to the lymphocytes (Paul, 2003).  The effective killing of 

bacteria, fungi, protozoa, some helminthes and tumor cells by phagocytosis of M is 

dependent on sustained production of nitric oxide (NO) by synthesizing inducible nitric 

oxide synthase (iNOS) and respiratory burst (Paul, 2003). The development of M in the 

fetus has not been studied in the horse. In pigs, the Mo and Mare developed during the 

second stage of gestation in the liver, and they are  phagocytic functionally competent 

prenatally (Rehakova et al., 1998).  In contrast, the phagocytosis and chemotactic 

migration of M are markedly impaired in neonatal foals compared with that of adults. 

MHC II and CD1b expression on the neonatal Mo derived M is extremely low though 

they have comparable CD86 expression compared with that of adult horses (Flaminio et 

al., 2007; Pargass et al., 2009). The M in neonatal foals cannot respond to CpG-ODN 
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stimulation in terms of IL-12 and IFN- production though they have the same level of 

TLR9 expression compared to adults (Flaminio et al., 2007). 

Granulocytes  

There are three types of granulocytes in the blood.  Neutrophil is the majority, 

composing about 95% of all the granulocytes in the blood (Tizard, 2009). It can migrate 

to the infection tissue, and  be activated by cytokines and/or chemokines. It kills 

pathogens through degranulation and phagocytosis via oxidative burst and release of 

chemokines and lysozyme (McTaggart et al., 2001).  The cytokine and chemokine 

production in response to stimulation also contributes to the induction or promotion of 

cascade inflammation and adaptive immune response.  Cytokine production by 

neutrophils in neonatal foals is different from adult horse, with lower IL-23, IL-12 and 

IL-18; and higher IL-6 and IL-8 with R. equi stimulation (Liu et al., 2009a; Nerren et al., 

2009a).  However, migration (Morris et al., 1987; Wichtel et al., 1991) and oxidative 

burst (McTaggart et al., 2001) responses of neonatal neutrophils are similar to adult 

horses. While the phagocytosis capacity of  neutrophils in neonatal foals is mostly likely 

to be competent at birth (Morris et al., 1987), their in vivo opsonic phagocytosis is lower 

(Wichtel et al., 1991).  The deficiency is caused by reduced serum opsonic capacity 

(Flaminio et al., 2000b; Grondahl et al., 1999; Hietala and Ardans, 1987b) due to reduced 

neonatal complement activity (Bernoco et al., 1994; Lavoie et al., 1989). The higher 

expression of complement receptor (CD18) on neutrophils may be a means of 

compensating for lower levels of neonatal serum opsonins (Grondahl et al., 1999). 

In basophils, IgE expression is very low even in 6 month old foals (Wagner et al., 

2003). Its production of IL-4 is also significantly lower than that of adult horses (Wagner 
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et al., 2010).  Little is known about the eosinophils and mast cells in the foal compared 

with that of the adult horse.  
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Respiratory immunity and R. equi infection in foals 

Respiratory immunity in foals 

All newborns are challenged by the environment after birth.  The respiratory tract 

is the second largest front-line exposure of the body to environment (Tizard, 2009).  In 

horses, the respiratory tract is particularly at risk for infection, because large air volumes 

pass through the respiratory tract of the horse (100,000 L per 24 hrs in an adult horse). 

However, the immune system of the respiratory tract in foals is functionally immature 

and mostly develops after birth (Mair et al., 1988b).  This may contribute to a high rate of 

mortality in foals due to respiratory disease, especially diseases caused by intracellular 

pathogenic infections, such as R. equi. The function of respiratory immunity is based on 

prevention of inhaled particle penetration via the epithelial barrier; elimination of 

particles by innate immune responses, such as M and induction of adaptive immune 

responses to pathogenic particles by lymphocytes in lymphoid tissues.  The large 

particles inhaled (>10 micron) are mostly trapped by the nasel turbinates, which act as a 

first line of defense for the lungs (Tizard, 2009). The rest of large and some smaller 

particles (>5 micron) are actively moved by the cilia and mucus that lines the airways 

from terminal bronchioles back to trachea.  Most of the microorganisms are killed by the 

antimicrobial molecules in the mucus, including lysozyme, surfactant proteins, and 

lactoferrin (Paul, 2008).  Very small particles (<5 micron) that reach the alveoli are 

ingested by alveolar M, which kill the pathogenic particles and move them back to the 

bronchoalveolar junction and for clearance by the flow of mucus. The particles caught by 

alveolar DC stimulate the DC, which then migrate to lymph nodes and initiate or activate 

the adaptive immune response, including antibody-mediated immune response by 
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activation and differentiation of B cells, and cell-mediated immune responses by 

activation of T cells (Paul, 2008; Tizard, 2009).  IgA is mainly secreted in the upper 

regions of the respiratory tract probably protects by means of immune exclusion, whereas 

IgG, secreted in bronchioles and alveoli, act by means of immune elimination (Tizard, 

2009).  Small particles may also penetrate alveoli, which are then cleared to the draining 

lymphoid tissue where the adaptive immune response may also be induced (Tizard, 2009). 

While the mucosa-associated lymphoid tissue (MALT) plays an important role in 

the protection of the respiratory tract and in the expression of local lung immunity  (Mair 

et al., 1987a, 1988a; Mair et al., 1987b, 1988c), the MALT in the respiratory tract is 

incomplete in foals (Mair et al., 1988a). The number and competence of immune cells is 

impaired in foals compared with that of adult horses.  The development of the local 

MALT in the respiratory tract and the immunocytes in foals’ lung are reviewed as 

follows.   

MALT in respiratory tract 

In adult horses, MALT in the respiratory tract is composed of nasal-associated 

lymphoid tissue (NALT), pharyngeal tonsils, larynx (LALT), trachea-associated 

lymphoid tissue (TALT),  and bronchus-associated-lymphoid tissue (BALT) (Liebler-

Tenorio and Pabst, 2006).  The appearance of the MALT begins in the fetus and 

gradually develops until 2 years of age, as determined by an acetic acid fixation method 

(Mair et al., 1987a, 1988a; Mair et al., 1987b, 1988c).  The first appearance of single 

isolated lymphoid nodules in fetuses occurs as early as 9 months gestation  at the 

vestibule, nasal cavity, nasophaynx, and LALT (Mair et al., 1988a). The number of 

nodules shows a marked increase after birth and reaches the adult level at 2 years old.  In 
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addition, the nasopharyngeal tonsil forms the largest single mass of lymphoid tissue in 

the respiratory tract at all ages.  However, BALT is not present in fetuses and neonatal 

foals, and is only found in 2-year-old foals (Blunden and Gower, 1999; Mair et al., 

1988a).  In adult horses, a few organized lymphoid nodules and predominately 

unorganized infiltrates of closely packed lymphocytes are seen in small intrapulmonary 

bronchi (Mair et al., 1987a).  In thoroughbred horses, organized lymphoid tissues and 

infiltrates of lymphocytes are also virtually absent in the lung of the neonates by an 

histological study (Blunden and Gower, 1999).  In addition, the lymphoid follicles are 

seen in bronchi and bronchioles in foals aged 8-22 weeks (Blunden and Gower, 1999). 

This age-associated distribution of mucosal lymphoid nodules reflects a gradual 

maturation of the respiratory immunity in foals.  The occurrence of  the nodules at 

specific sites within the tract and the areas where inhaled antigens accumulate (Mair et al., 

1988a) suggests an influence of environmental exposure on this development. This age-

related and exposure-associated development of respiratory immunity is also found in 

rabbits (Bienenst.J et al., 1973).  

Immunocytes in the lung 

Not only dose the distribution of nodules in the foals exhibit an age-related 

development, but also the maturity of the immunocytes in the lung appears to exhibit an 

age-dependent development.   Besides being located in MALT, lymphocytes are 

distributed diffusely throughout the lung: in the walls of the airways, the mucus, 

parenchymal tissues and alveoli. Current understanding of foals’ lymphocytes in the lung 

is mostly based on a technique called bronchial alveolar lavage (BAL). Alveolar 

lymphocytes compise about 40% of the total BAL cells in adult horses (Tizard, 2009), 
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compared to about 4-6% in neonatal foals (Balson et al., 1997b). Both the absolute 

number and the frequency of lymphocytes in BAL fluid has been well documented to 

increase over time but remains low in foals at 10 weeks (Balson et al., 1997b; Flaminio et 

al., 2000b; Zink and Johnson, 1984), as in the blood (Flaminio et al., 2000b).  The plasma 

cells are absent in the walls of small bronchi and bronchioles (Blunden and Gower, 1999). 

IgG-, IgM- and IgA-producing plasma cells appear one week after birth and the numbers 

of the cells reached an adult level in foals at 8 to 12 weeks (Blunden and Gower, 1999).   

The paucity of T cells is also found in neonatal BAL fluid.  Both lower numbers 

and lower proportions of T cells in lymphocyte gate are seen in foals less than 6 weeks 

old (Flaminio et al., 2000a). This reduced number of lymphocytes present in alveoli and 

the lack of available lymphocytes to participate in the immune response in foals less than 

6 weeks old may have relevance for foals pulmonary disease susceptibility (Balson et al., 

1997b). Memory T cells may also be absent in BAL cells from neonatal foals because 

fewer MHC II
+
 cells are found in foals than in adult horses (Balson et al., 1997b). An 

impaired function of lung T cells in neonatal foals is shown as low expression of 

cytokines in response to mitogen stimulation (Breathnach et al., 2006a).     

 The BAL Mplay an important role in the horse defense mechanism in the lung. 

M comprise of about 60% of all BAL cells in an adult horse (Tizard, 2009), compared 

to over 80% in foals (Flaminio et al., 2000b). Like lymphocytes, foal BAL M also 

exhibit an impaired chemotactic function (Fogarty and Leadon, 1987), and a lack of 

phagocytosis and intracellular killing of bacteria (Liu et al., 1987).   

 Alveolar DCs compise a very small portion of BAL cells (less than 1% in 

humans) (Tsoumakidou et al., 2006). No other studies of the alveolar DCs in neonatal 
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humans, mice, or foals have been reported.  The studies of DCs in the respiratory tract of 

neonatal rat lungs demonstrate a low density of MHC II expression compared with that of 

adults. On the contrary, the pulmonary DCs from digested lung tissues of neonatal sheep 

do not exhibit an intrinsic functional defect that would impair their ability to take up 

antigen and stimulate naïve T cells (Fach et al., 2006). Whether there are phenotypical 

differences and/or functional immaturity in neonatal lung DC in foals is unknown.   

R. equi infection 

R. equi was first identified in 1923. It is a facultative, intracellular, gram positive 

pathogen (Prescott, 1991). The infection manifests as subacute or chronic 

pyogranulomatous bronchopneumonia with abscessation and may present numerous 

extra-pulmonary disorders, such as pyogranulomatous enterotyphylocolitis and 

polysynovitis (Giguere et al., 2011a).  The disease ranks second, behind injury, as a 

leading cause of death in foals less than six months old.  It inflicts a significant economic 

impact on the horse industry both in the USA and worldwide (Prescott, 1991).  The costs 

of treatment and foal losses from infection on farms can be substantial. Thus, 

understanding the susceptibility mechanism and estimation of the risk of foals to R. equi 

infection is of great importance in reducing foal wastage. 

It is well accepted that all disease development is controlled by the interaction 

between virulence of the pathogen and the susceptibility of the host.  On one hand, 

intracellular bacteria, such as R. equi, have multiple ways to escape the defense 

mechanism of the body (Figure 1.1).  The pathogenesis of the bacteria depends on R. equi 

resistance to intracellular killing by M phagocytosis.  On the other hand, horses exhibit 

an age-associated susceptibility, though all horses are exposed to the ubiquitous R. equi 
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in an equine environment.  The pneumonia is observed almost exclusively within foals 

less than 6 months old, not in adult horses, even in the same farm with epidemic R. equi 

(Giguere et al., 2011b; Prescott, 1991).  In foals, R. equi pneumonia cases occur between 

3 and 24 weeks of age (Giguere et al., 2011a), occurring in most clinical cases by 2 

months of age (Prescott, 1991).  The naivety of the immune response is believed to be the 

contributor, as in other neonate-susceptible diseases reviewed above.  The immature 

innate, humoral and cellular immune responses are responsible for foals’ susceptibility to 

this intracellular pathogen infection (Figure 1.1).  The following section will reviews the 

clinical signs, etiology of R. equi infection, and pathogenesis and virulence of R. equi. 

The following section will also demonstrate recent understanding of the immunity to R. 

equi infection and the possible factors in the immunity that may be responsible for foals’ 

susceptibility to the disease. 
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Figure 1.1. The strategy of intracellular bacteria to escape the cellular killing. 1, 

Prevention of lysosome-phagosome fusion; 2, Resistance to lysosomal enzymes; 3, 

Escape into the cytoplasm. 

Clinical signs 

 Nowadays, the standard case of R. equi infection is a subclinical infection with 

mild neutrophilic leucocytosis and hyperfibrinogenaemia, which can be associated with 

abscessation or pulmonary changes (Muscatello et al., 2007; Vazquez Boland et al., 

2009), possibly due to a better clinical monitoring of foals and more effective antibiotic 

treatment regimens. The severe variant of R. equi pneumonia is characterized by massive 

abscessation of the lung with fever, neutrophilia, mucopurulent respiratory discharge, and 

cough (Yager, 1987) and is rarely observed anymore (Muscatello et al., 2007). Inhaled R. 
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equi are phagocytosed by alveolar M but may not be killed (Hietala & Ardans, 1987; 

Zink et al., 1987). In the early stage of the disease, pulmonary lesions develop and alveoli 

fill with neutrophils, M and giant cells. Many of these cells contain intracellular R. equi 

(Johnson et al., 1983a). As the disease progresses, the lung parenchyma becomes necrotic 

(Johnson et al., 1983a; Zink et al., 1986), and bronchial and mesenteric lymph nodes are 

affected (Zink et al., 1986; Yager, 1987). In many cases, granulomatous foci in the lung 

open up, and R. equi spreads through the body and affects other organs (Prescott, 1991). 

Severe diarrhea with an ulcerative enteritis and mucosal invasion of R. equi is observed 

frequently, particularly in chronic disease (Cimprich & Rooney, 1977; Zink et al., 1986). 

This might be due to the ingestion of sputum containing large numbers of bacteria. 

Accordingly, intestinal lesions can be experimentally induced by oral infection of foals 

over a prolonged period of time (Johnson et al., 1983b).  

Epidemiology  

  The virulent R. equi is a facultative pathogen that usually induces 

bronchopneumonia in foals and occasionally induces chronic cervical lymphoadenitis of 

pigs, tuberculosis-like lesions in the lymph nodes of cattle and in the liver of young goats.  

While R. equi causal diseases occur in multiple animals, rhodococcal bronchopneumonia 

is the most enzootic, occurs worldwide and leads to significant economic losses.  Foals 

less than 6 months of age are susceptible to development of rhodococcal 

bronchopneumonia with a majority of cases occurring in foals less than 3 months old.  

The mortality ratio of foals with R. equi pneumonia nearly reached 80% before 

rifampin/erythromycin therapy was launched, but the mortality rate was reduced to 12% 

after utilization of these antibiotics in treatment (Hillidge, 1987).  Nowadays, in Australia, 
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1-10% of foals are affected with a mortality rate, usually <1% due to antibiotic treatment, 

yet in some farms, it may be as high as 20% or more (Muscatello et al., 2006).  The 

prevalence of R. equi pneumonia was 47% of 138 cases of pneumonia in non-randomized 

samples from American horse-breeding farms, with 13% of all foals on affected farms 

being infected and a mortality rate of 8%.   

The factors that seem to be associated with increased incidence of R. equi 

infection include a high density and population size of foals, a large farm size, and high 

numbers of airborne virulent R. equi, which correlates with low soil moisture, high 

temperatures and a poor pasture grass cover (Muscatello et al., 2006).  The virulent R. 

equi is prevalent in soil located in association with horses since their growth can be 

enhanced by the fatty acids found in horse manure and they can survive in extreme 

conditions.  Therefore, bacteria are found in greater numbers where horses are present, 

with the numbers increasing with the concentration of horses, and a progressive build-up 

of infection on horse farms that have been used for rearing foals for a prolonged period.  

For instance, R. equi were isolated from most of the soil samples in horse breeding farms 

(24 out of 31) in a prevalence survey in Japan, at numbers of 10
2
 to 10

5
 colony forming 

units (CFU) per gram of soil.  In accordance with the prevalence of virulent R. equi in 

soil, the aerosol dust particles contain a higher number of culturable colonies per cubic 

meter in air from stalls with condensed horses than that of paddocks (Kuskie et al., 2011).  

This indicates that foals on R. equi pneumonia enzootic farms are frequently exposed to 

high numbers of virulent bacteria. Yet, the actual proportion of virulent strains in the soil 

is no indication for prevalence of R. equi pneumonia, and the relative proportion of 

virulent R. equi in dams’ feces is not indicative of the development of R. equi pneumonia 
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in their foals, although a recent study on the prevalence of aerosolized virulent R. equi 

observed a correlation between the number of R. equi in the air and the  natural infection 

rate of foals with R. equi (Kuskie et al., 2011).    

The inhalation of aerosolized dust contaminated with the bacteria is believed to be 

the route of R. equi infection  and it is important for the induction of bronchopneumonia 

(Muscatello et al., 2009), however, intestinal infection in foals through a fecal-oral route 

may also occur since R. equi can replicate in intestines of foals up to 3 month of age 

(Takai, 1997).  Transmission of R. equi pneumonia from foal to foal  has not been 

documented, though the bacteria can be found in the breath of sick foals (Muscatello et 

al., 2009), which leaves a possibility of a contagiousness.  

Aetiology  

As one of the Rhodococcus species, R. equi is a Gram-positive, obligate aerobic 

bacterium.  The shape of R. equi varies from bacillary to coccoid, depending on the 

growth conditions.  With the optimal growth temperature between 30 and 37ºC (Prescott, 

1991), the bacteria are rod shaped after 4 hours of growth in culture broth, whereas they 

become coccoid after 24 hours growth in liquid media or on agar (Fuhrmann and 

Lammler, 1997). The nutrient requirement for the organism is simple, and they grow well 

on normal non-selective media, such as tryptic soy broth or agar.  The irregular, smooth 

and mucoid colonies can be achieved usually after 48 hours of culture at 37ºC on agar 

plate, although characteristic colonial variants occur.  Salmon-pink or rosy red colonies 

may develop after 4 days or longer of incubation, or during storage (Prescott, 1991).  

These colonial and microscopic appearances are utilized for clinical laboratory 

identification and detection for R. equi infection.   
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R. equi can deal with some extreme environmental conditions such as low pH and 

oxidative stress (Benoit et al., 2002), which is due to their complex hydrophobic cell wall.  

The R. equi cell envelope is comprised of mycolic acid-containing lipids and lipoglycans 

such as lipoarabinomannan (ReqLAM) (Garton et al., 2002; Sutcliffe, 1998).  The thick 

and lamellar polysaccharide capsule surrounding the  R. equi cell wall also contributes to 

the survival in tough environmental conditions (Prescott, 1991). The virulence factors of 

R. equi include an extra-chromosomal plasmid of 80 to 90 kb, which encodes the 

production of a series of virulence-associated proteins (Vap), such as Vap A, VapB, 

VapC ect. Chromatin virulent gene also encoded some proteins that contribute to the 

virulence of R. equi, such as capsular polysaccharide, cell wall mycolic acid, and lipid 

metabolic associated enzyme.  

Pathogenesis  

R. equi is a facultative intracellular pathogen. Its ability to persist in, multiply and 

eventually destroy alveolar M is its fundamental characteristic of pathogenicity.  There 

are three ways of R. equi entry into the M: via ReqLAM binding to mannose receptor on 

the M, via binding complement and complement receptors (CR) , such as CR3, on the 

M; and via binding antibodies and Fc receptors (FcR) on the M (Giguere et al., 2011a).  

However, the mechanism that contributes to the survival and even replication of R. equi 

in the endosomal vacuole after phagocytosis is poorly understood.   

 In the normal phagocytosis procedure, foreign particles are wrapped into the 

phagocyte membrane to form a new organelle, called the phagosome. The phagosome 

undergoes a fusion/fission event with vesicles from the endocytic pathway. The complex 
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phagosome maturation process occurs by interaction with the endosomal system via 

movement of phagosome on microtubules and change of the molecules on its surface.  

The phagosome matures into an early phagosome by fusion with an early/sorting 

endosome, obtaining a pH between 6.0 and 6.5.  The early phagosome then fuses with the 

late endosome, which leads to the acidification of the late phagosome (pH 5.0-6.0).  And 

the maturation of the phagosome is achieved by finally fusing with the lysosome. The 

gradual acidification drives the whole process of phagolysosome maturation. The killing 

of the particle occurs by the combined action of a low pH (4.0-5.0) and many hydrolytic 

enzymes (protease, lipase, DNAase, RNAse and more). Besides the lysosomal 

degradation, bacteria can also be killed by the production of reactive oxygen metabolites, 

such as superoxide radicals, hydrogen peroxide and peroxynitrite or nitrite oxide, by 

Mthrough the respiratory burst phagocyte oxidase and inducible NO synthase (iNOS).  

For the bacteria that do not interfere with the process, the formation of phagosome from 

phagocytosis takes about 3-10 minutes, while the normal formation of phagolysosome 

takes about 15-60 minutes varying from bacteria to bacteria.  Most phagosomes 

containing virulent R. equi do not progress into a late endocytic organelle, instead 

forming a R. equi containing vacuole (RCV).  Intracellular bacteria have developed 

various strategies to avoid phagolysosome formation and killing.  So, this brings up the 

question of what strategy is used by R. equi.  

  To arrest phagosome maturation at a stage between the early and late endosomes 

is the most important strategy used by R. equi to escape the killing system of 

phagocytosis (Fernandez-Mora et al., 2005). The successful establishment of the RCV 

depends on the virulence plasmid, even for formalin-killed R. equi in M.  The RCV 
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form a loose membrane in M and multiply after 2 hours of initial lag-phase and the 

membrane remains morphologically intact and nothing escapes into the cytoplasm.  The 

cytotoxicity of R. equi for M is regulated by the virulence plasmid by inducing necrosis, 

rather than apoptosis, compared with the avirulent R. equi (Luhrmann et al., 2004).  This 

degradation of host cells becomes detectable at about 8 hours post infection (Luhrmann et 

al., 2004).         

Immunity to R. equi infection 

 The immune response to R. equi includes innate, antibody-mediated and cell-

mediated immune responses as represented in the graphic (Figure 1.2).   
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Figure 1.2. Immunity to intracellular bacterial infection. The immune response of host 

bodies to intracellular bacterial infection is comprised of: innate immunity, including 

phagocytosis of M and neutrophil, complement and lysozyme lysis, antigen recognition 

by APC (DCs and M), and cytotoxicity by NK cells; antibody-mediated immunity, 

including opsonization and neutralization by antibodies; cell-mediated immunity, such as 

activated M killing, cytokine secretion by helper T cells and lysis of the infected cells 

by cytotoxic T cells. 

Innate immunity 

Immunity to R. equi infection begins with the innate immune response. The innate 

immune response to intracellular bacterial infection is composed of humoral components 

such as complement, and cellular components, such as neutrophils, M and NK cells.        

There are two ways of complement killing of bacteria: complement lysis and 

opsonization.  However, the polysaccharide capsule surrounding R. equi and the thick 

peptidylglycan on the R. equi cell wall (Prescott, 1991) provides resistance against 

complement lysis (Rautemaa and Meri, 1999), as in Mycobacterium tuberculosis.  

Therefore, the complement-induced killing of R. equi relies on opsonization to facilitate 

phagocytosis by neutrophils through the complement receptor. However, the 

phagocytosis induced by the complement receptors is not competent.  Instead, efficiently 

phagocytes ingest of CR3-opsonized targets only occure when cells are activated both in 

vivo and in vitro by cytokines, such as IL1 and TNF. Thus, the capacity of these 

receptors for ingestion is not constitutive but depends on many other cellular events.   
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Neutrophil killing of bacteria includes: phagocytosis, degranulation and 

neutrophil extracellular traps.  The phagocytosis killing function of neutrophils to control 

primary infections is widely documented in immunity to R. equi infection. Neutrophils 

exhibit a substantial protective role by reduction of R. equi burden in the lung (Martens et 

al., 2005).  They also produce the cytokines to promote the later immune responses, such 

as TNF, IL-12 and IL-6, in response to R. equi stimulation (Liu et al., 2009a; Nerren et 

al., 2009a). While the neutrophil function is impaired in foals as no association of 

reviewed previously, its relevance to R. equi susceptibility is not clear, as no age-

associated cytokine expression is found in R. equi-stimulated neutrophils (Liu et al., 

2009b; Nerren et al., 2009b). 

However, the killing of intracellular bacteria is primarily accomplished by 

professional phagocytotic cells, M by highly reactive toxic molecules, particularly 

reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI).  The 

production of ROI is through respiratory burst, another way of bacterial killing within the 

phagosome (Figure 1.3).  The procedure consumes oxygen and generates reactive oxygen 

species.  The ROI production is initiated by a membrane bound NADPH oxidase, which 

is activated by IFN- and by IgG-FcR binding. It functions by destroying and S-

nitrolylating bacterial proteins, damaging DNA and membrane lipids, and generating 

highly reactive antibacterial peroxynitrite (ONOO
-
) with NO

• 
(Figure 1.3).  Both ONOO

- 

and NO
•
 appear to have central roles in antibacterial defense against M. tuberculosis in 

mice. NO
•
 is exclusively derived from the terminal guanidine-nitrogen atom of L-arginine.  

This reaction is catalyzed by iNOS, which lead to the formation of L-citrulline and NO
•
. 

NO
•
 not only destroys the protein, DNA, and membrane lipids, but also inactivates the 
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ion-sulfur enzyme of the bacteria. While the production of NO is NADPH dependent, it 

requires iNOS as catalyst (Figure 1.3).  There are three types of NOS isoenzymes. The 

two constitutive NOS (cNOS) exist in various host cells and account for basal NO 

synthesis, whereas iNOS is primarily found in professional phagocytes and is responsible 

for microbial killing.  Its induction is controlled by exogenous stimuli such as IFN-.  

This iNOS stimulation results in a burst of high RNI concentrations required for 

microbial killing, whereas the low NO levels produced by cNOS perform physiologic 

functions. 

O2+NADPH 
                

 
→NADP+O2

-
+H

+
 

L-Arginine 
        

 
→NO

•
+L-Citrulline 

O2
-
+ NO

•
→ONOO

-
 

Figure 1.3. Production of RNI and ROI. The generation of ROI, such as O2
-
, 

occurs during respiratory burst by NADPH oxidase catalysis. The generation of RNI, 

such as NO
•
 is induced by iNOS catalyst. The peroxynitrite is generate by NO

•
 and O2

-

reaction. 

The M, as a professional phagocytotic cell, plays a central role in eliminating R. 

equi.  It serves not only as the habitat but also as the effector cells for R. equi killing.  

However, the phagocytic killing by infected M is blocked by R. equi via inhibition of 

phagosome and lysosome fusion or phagolysosome maturation.  The inhibition was found 

in CR3 and mannose receptor mediated Mphagocytosis. However, IFN- stimulation 

can activate M resulting in transition of M from habitat-supporting microbial 
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replicator cells into immune effector cells capable of terminating, or at least restricting, 

microbial survival.  IFN- can activate NADPH oxidase and iNOS, which ultimately 

generate the ROI and RNI. Activated M have increased phagocytosis, elevated CR, 

reduced FcR expression and higher overall metabolic rates.  

Antibody-mediated immunity 

 As described above, specific antibodies neutralize and facilitate opsonization of R. 

equi. The specific antibody-induced opsonization is important for killing of R. equi by 

M as it promotes phagosome-lysosome fusion (Cauchard et al., 2004). The evidence for 

the protective role of antibodies against R. equi is that passive transfer of anti- R. equi 

hyperimmune equine plasma protects foals against R. equi infection. The purified anti-

VapA and anti-VapC antibodies exhibit the same protective effect as the hyperimmune 

plasma in foals against experimental pneumonic infection (Hooper-McGrevy and 

Prescott, 2001). Therefore, foals’ lack of the R. equi-specific antibodies because of the 

reduced absolute number of B cells and the impaired endogenous IgA, IgG and IgM 

generation in the lung may contribute to their susceptibility to R. equi infection. 

In addition, subisotypes of IgG have different functions: IgGa and IgGb opsonize 

microbes and fix complement, whereas IgGT may competitively inhibit the fixation and 

opsonization of IgGa and IgGb, and produces weak leukocyte respiratory burst (Lewis et 

al., 2008) (Banks and McGuire, 1975; McGuire and Bariso, 1972).  Because of this, IgGa 

and IgGb are considered the most important antibodies against R. equi (Lewis et al., 2008; 

Taouji et al., 2004).  VapA specific IgGa and IgGb are effectively generated by foals with 

experimental R. equi challenge (Hooper-McGrevy et al., 2005; Jacks et al., 2007b).  The 
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IgG subisotypes reflect T-cell responses which influence class switching in B cells, with 

IgGb and IgGT associated with a Th2 (IL-4) response and IgGa associated with a Th1 

(IFN-) response (Hooper-McGrevy et al., 2003; Jacks et al., 2007b).   

Cell-mediated immunity 

 The immunity of adult horses to R. equi reflects an acquired immune response and 

the ability to mount effective Th1 responses. Clearance of virulent R. equi  from the lung 

of adult horses is associated with an increase in CD4 and CD8 T lymphocytes and 

lymphoproliferative responses at the site of challenge (Hines et al., 2001). Adoptive 

transfer studies in mice showed that CD4 Th1 lymphocytes are essential and sufficient 

for effective pulmonary clearance of virulent R. equi, whereas induction of a Th2 

response results in characteristic lung lesions (Kanaly et al., 1996a). CD8 T lymphocytes 

are also involved in the clearance of R. equi as CD8 CTL in adult horses lyse R. equi 

infected cells ex vivo but not kill uninfected versions of the same target cell (Kanaly et al., 

1993). This CTL presents a MHC I unrestricted and bacteria lipid recognization format. 

These studies strongly suggest that induction of a Th1 immune response involving both 

CD4 and CD8 T lymphocytes and characterized by IFN- and CTL activity is essential 

for pulmonary clearance and protective immunity against R. equi in adult horses. The 

life-threatening pyogranulomatous bronchopneumonia in foals likely reflects a decreased 

ability to mount the responses necessary for effective clearance of the organism from the 

lung. The mechanisms that underlies the age-related predisposition are unknown, but it is 

thought to be related to immaturity of the immune system in foals and their impaired 

potential to mount potent Th1 immune response and CTL activity early in life.  
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In foals, the reduced number of lymphocytes present in alveoli and the lack of 

available lymphocytes to participate in the immune response in foals less than 6 weeks 

old may have relevance for susceptibility to R. equi infection (Balson et al., 1997b). The 

impaired IFN- expression by both CD4 and CD8 T cells is considered to be associated 

with foals’ susceptibility to R. equi infection. Additionally, other impaired cytokine 

expression, such as IL-12 and IL-17, in neonatal foals may also play a role (Liu et al., 

2011b; Liu et al., 2009c). Foals less than 3 weeks of age lack the R. equi-specific CTL 

activity although the CTL do begin to appear subsequently and are present at 8 weeks of 

age (Patton et al., 2005). This age-associated CTL response may also contribute to the 

susceptibility. 

The primary activation of naive lymphocytes in response to R. equi depends on 

antigen presentation of peptides and strong co-stimulation from professional APCs. 

Therefore, the impaired APC function of neonatal foal DC may also contribute to the 

susceptibility to R. equi infection, such as low levels of essential surface molecules 

(MHC II and CD86) and cytokine (TNF) expressions as reviewed before. In addition, a 

source of lung APC exhibits an IL-10 production bias in Mo stimulated with LPS and 

IFN- in neonatal foals; this may also play a role (Sponseller et al., 2009a). In practice, 

the ineffective up regulation of MHC II and CD1b in response to R. equi stimulation may 

also contribute to the susceptibility (Flaminio et al., 2009; Pargass et al., 2009).  

In summary, besides ‘naivety’ of the neonatal immune system because of lack of 

exposure to microbial antigens before birth, there may be age-related impairments both in 

important antigen-presenting molecules and in cytokines important for effective cell-

mediated immune responses, which synergize with the pathogen in driving an ineffective 



 

36 
 

immune response, thus allowing the successful continued replication of R. equi in M 

and its spread from the lungs back into the environment.  

The susceptibility of R. equi infection and IFN- production in foals 

R. equi successfully infects certain host animals and cell types with high 

specificity, strongly suggesting that not only bacterial virulence factors, but also 

particular host (cell) factors determine success or failure of R. equi invasion. Most of the 

foals on endemic farms do not develop disease, reflecting a predisposition of only a 

certain subpopulation of foals to R. equi infection.  The factors that account for the 

particular susceptibility of foals to R. equi infection are not well known.  Given that IFN-

 expression activates the M clearance of R. equi and there is limited IFN- expression 

in foals, the extremely low expression of IFN- in foals contributes partly to its 

susceptibility to R. equi infection.  Therefore, it is very important to know how IFN- 

expression is regulated in foals and how to promote the expression. 
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Regulation of IFN- expression 

IFN- as a canonical Th1 cytokine, is critical for innate and adaptive immunity 

against viral and intracellular bacterial infections. The importance of IFN- in the 

immune response derives from its immunostimulatory and immunomodulatory effects 

and in part derives from its ability to inhibit viral replication directly. IFN- promotes 

naïve T cells differentiation into Th1 effector cells, which mediate cellular immunity 

against viral and intracellular bacterial infections; it contributes to M activation by 

increasing phagocytosis and priming the production of proinflammatory cytokines and 

potent antimicrobials, including superoxide radicals, nitric oxide, and hydrogen peroxide 

(Boehm et al., 1997); it increases NK cell activity in killing of infected cells; it activates 

cytotoxic T cells; and it up regulates both MHC I and MHC II antigen presentation by 

increasing expression of subunits of MHC I and II molecules, TAP1/2, invariant chain, 

and the expression and activity of the proteasome (Schoenborn et al., 2007) , as shown in 

Figure 1.4.   
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Figure 1.4. Functions of IFN-. IFN- is produced by CD4, CD8 and NK cells. It 

promotes T and B cell differentiation, contributes to M activation, increases NK cells 

activity, activates cytotoxic T cells and granulocytes, and up regulates both MHC I and 

MHC II in many cell types. 

In humans, decreased IFN- induction or signaling is associated with strikingly 

increased susceptibility to mycobacterial infections (Filipe-Santos et al., 2006).  Systemic 

infections with Salmonella are also more common (de Jong et al., 1998) in those with 

defective IFN- production or defective signaling regulation of IFN- production 

(MacLennan et al., 2004).  In mice, the clearance of R. equi depends on IFN- 

production by CD4
+
 T cells (Kanaly et al., 1995b, 1996b).  In adult horses, clearance of 

virulent strains of R. equi from the lungs is also associated with the production of IFN- 

by T cells (Hines et al., 2003b; Patton et al., 2004b) as reviewed above.  However, IFN- 

production is deficient in foals (Boyd et al., 2003; Breathnach et al., 2006a)  and this 

deficiency is thought to be responsible for their susceptibility to R. equi infection (Marodi, 
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2006b).  Similarly, reduced IFN- expression has also been observed in humans and 

murine neonates (Lewis et al., 1986a; Lewis et al., 1991; Wilson et al., 1986a).  IFN- is 

necessary to prevent various infections (Gasparoni et al., 2003; Schoenborn and Wilson, 

2007), yet little is known regarding the underlying mechanism regulating its expression 

in horses.   

The primary sources of IFN- are CD8 and CD4 Th1 effector T cells of the 

adaptive immune system, and NK cells and NKT cells of the innate immune response. In 

contrast to rapid induction of IFN- in NK and NKT cells, naive CD4 and CD8 T cells 

produce little IFN- immediately following their initial activation (Schoenborn et al., 

2007). However, naive CD4 and CD8 T cells can gain the ability to efficiently transcribe 

the gene encoding IFN- in a process which is dependent on their proliferation, 

differentiation, upregulation of IFN--promoting transcription factors (TF), and 

remodeling of chromatin within the Ifng locus (Schoenborn et al., 2007).  The 

differentiation into IFN-- producing CD4 Th1 effector T cells, and to a lesser extent into 

CD8 effector T cells, is dependent on the nature of the infecting pathogen and the 

cytokine milieu emanating from the innate immunity (Schoenborn et al., 2007).  

Consistent with transcriptional up-regulation of IFN- expression in differentiated 

CD4 and CD8 effector cells in humans, the IFN- expression in foals is regulated at the 

transcriptional level as indicated by correlated protein and mRNA expression of IFN- 

gene in stimulated PBMCs (Breathnach et al., 2006a).  The transcription of IFN- gene 

starts with the regulatory TF binding to elements, recruitment of RNA polymerase and 

initiation of IFN-gene transcription. The transcription regulation operates in three 
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aspects: the availability, magnitude and types of TFs; the accessibility of the elements 

controlled by DNA methylation and histone modificational of chromatin structure which 

is named epigenetic regulation; and the cell proliferation which opens a window for 

modulation of chromatin structure, DNA methylation and TF production, as shown in the 

model (Figure 1.5).   

In the following section, we will review function of TF and epigenetic (DNA 

methylation and histone modification) mechanisms on regulation of IFN-gene 

transcription, and the signaling pathways that control IFN-gene transcription in CD4 

and CD8 T cells.  

 

Figure 1.5. Model of transcription regulation of IFN- gene expression. Transcription 

factors initiate Ifng transcription by binding to the regulatory elements on Ifng promoter. 

However, the transcription is repressed when the DNA is methylation and/or chromatin 

exhibit a compact structure around the Ifng promoter. Nevertheless, the repression can be 

overcome by lymphoproliferation which “open” a window for the DNA demethylation, 

the chromatin remodeling and the regulation of transcription factor production. 

Regulation signals for IFN- gene transcription 

 The regulation signals for IFN- gene transcription are antigen recognization, T 

cell receptor (TCR) signaling from antigen presentation by MHC, cytokine induced JAK-
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STAT and SMAD signaling, and Notch signaling from APC. The four signaling 

pathways are described as follows.  

Regulation of IFN- gene transcription through TCR signaling 

   The efficient IFN- secreting cells differentiated from naive CD4 and CD8 T 

cells require several rounds of proliferation induced by TCR signals. During proliferation, 

environmental signals influence the expression and activation status of specific receptors, 

downstream signaling molecules, and transcription factors.  These, in turn, allow these T 

cells to express IFN- and commit to the Th1 CD4, or CD8 CTL effector lineage 

(Murphy and Reiner, 2002a; Reiner, 2001).  For naive CD8 T cells, signals delivered 

from the TCR and costimulatory molecules induce differentiation into a fully committed 

CTL that is capable of IFN- secretion, which is thought to be the result of the 

constitutive expression of the T-bet paralog Eomesodermin (Eomes) (Pearce et al., 

2003a). On the contrary, naïve CD4 T cells stimulated whereby TCR and co-stimulatory 

molecules signaling produce small amounts of IL-2, IFN-, and IL-4 via rapidly activated 

transcription factors nuclear factor of activated T cells (NFATs), nuclear factor (NFB), 

and activator protein-1 (AP-1).  The fate of the IFN- producing Th1 cells is 

predominantly governed by the cytokine milieu produced by APCs, and also regulated by 

the nature of the APC and the magnitude of stimulation, with stronger and longer 

signaling generally favoring Th1 development (Pulendran and Ahmed, 2006).  
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Cytokine up-regulation of IFN- gene transcription through STAT signaling 

 Cytokines, such as IL-12, IL-18, IFN-, Type I IFN-s, IL-23, and IL-27, play an 

important roles in induction and maintenance of IFN- gene transcription as reviewed 

below.  

 IL-12 binding with its receptor activates Jak2/Tyk2 and induces signals via 

STAT4 (Trinchieri et al., 2003), which in turn induce expression of the IL-18 receptor. 

The combined signals from IL-12, IL-18, IFN-, maximize expansion and optimal 

activation of Th1 T cells (Murphy and Reiner, 2002a).  

IFN- acts in a positive feedback loop to facilitate its own expression by T cells 

via focused recruitment of IFN- receptors to the immunological synapse, whereby IFN- 

secretion results in an autocrine response (Maldonado et al., 2004). IFN- binding to 

receptor on CD4 T cells leads to STAT1 phosphorylation and translocation into nucleus 

which induces Tbet (Lighvani et al., 2001).   

Type I IFNs induce IFN- transcription via activation of STAT4 in human CD4 T 

cells (Tyler et al., 2007). The signals by IFN-/IFN- combined with IL-18 stimulation 

drive acute IFN- secretion (Matikainen et al., 2001).  IFN- can also up-regulate 

MyD88 and synergize with IL-12 to augment the IL-18 stimulating signals by elevating 

IL-18 receptor expression (Sareneva et al., 2000) in CD4 T cells. In CD8 T cells, IFN- 

appears to have a sufficient effect on inducing IFN- production though not as efficient as 

the IL-12 (Curtsinger et al., 2005).  
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IL-23, expressed by activated DC (Trinchieri et al., 2003), regulates the 

maintenance of IFN-transcription in CD4 T cells via activation of STAT3/STAT4 

(Oppmann et al., 2000), although it may also affect the survival and expansion of Th17 

cells (Weaver et al., 2006).  IL-27 is expressed by virus-infected cells, activated M, and 

DCs. It activates resting CD4 T cells via both STAT1 and STAT3. The activation of 

STAT1 induces Tbet expression, and in turn up-regulates IFN-transcription (Pflanz et 

al., 2002). The synergization induction of IFN-transcription with IL-12 and IL-18 is 

also observed (Pflanz et al., 2002).   

Cytokine down-regulation of IFN- gene transcription  

 In addition, some cytokines inhibit IFN-transcription, such as TGF- and IL-6. 

TGF- suppress IFN-transcription directly and indirectly by inhibiting expression of 

Tbet, STAT4 IL-12Rb2 and itself, which signals through SMAD3/4 heterodimers 

activated by TGF-R (Schoenborn et al., 2007). IL-6 inhibits IFN-transcription by 

blocking STAT1 activation induced by IFN-Rthrough potentiating expression of the 

suppressor of cytokine signaling-1 (SOCS-1) (Diehl et al., 2000). 

Notch signaling pathway regulats oIFN- gene transcription  

  There are four members of Notch, namely Notch 1 to 4. Five identified Notch 

ligands are expressed on DCs in mammals, namely Jagged 1 and 2, Delta 1, 3 and 4. 

Notch plays a role in regulating differentiation of naïve CD4 T cells in to distinct Th cells. 

Notch 3 - Delta 1 interaction results in Th1 differentiation (Maekawa et al., 2003). The 

promotion of Th1 differentiation of naïve T cells is found upon Notch ligand interaction 

with Delta 4 via an IL-12 independent way (Skokos and Nussenzweig, 2007). By contrast, 
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Th2 differentiation is induced by the interaction of Notch- Jagged 1 via activation of 

GATA3 and IL-4 transcription (Amsen et al., 2004).  The activation of IFN-

transcription by Notch signaling is based on the cascade cooperating NFB binding on 

the IFN- gene (Minter et al., 2005). It also controls the activation of T cells by 

promoting CD4 and CD8 T cell proliferation (Adler et al., 2003). 

TF regulation of IFN- gene transcription 

  Regulation for IFN- gene expression is signaled from the receptors on the 

plasma membrane through the cytoplasm and into the nucleus by induction of TF 

expression, posttranslational modification, and/or nunclear translocation. Because TFs 

that are downstream of TCR and costimulatory signaling, such as NFAT, NFB and AP-

1, are ubiquitously expressed and responsible for regulating multiples genes (Szabo et al., 

2003). These TFs are not described in the review. The STATs and the “master” TFs, such 

as Tbet and GATA3, which specificly regulate IFN- gene transcription, are reviewed 

below. 

STATs play critical roles in the initiation of IFN- transcription in naïve T cells 

via differentiation to and expansion of Th1 cells. Of the six STATs in the family, STAT1 

and STAT4 facilitate IFN- transcription.  STAT1 plays an important role in indirectly 

influencing IFN- transcription by potentiating Tbet expression. Although this can be 

activated by multiple cytokines, such as IFN-, IL-27 and Type I IFNs, only STAT1 

transduction of the signaling from IFN- activation is sufficient to induce sustained 

expression of Tbet (Lighvani et al., 2001).  In contrast to STAT1, STAT4 activation by 

IL-12 facilitates IFN- transcription mainly by promoting the commitment to Th1 lineage 
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and sustained Th1 response in CD4 T cells (Mullen et al., 2002).  In collaboration with 

NFB activated by IL-18, IL-12-activated STAT4 also induces IFN- production in an 

antigen-independent manner in both CD4 and CD8 T cells (Carter and Murphy, 1999; 

Mullen et al., 2002). Other STATs, such as STAT3 and STAT5, play an important role in 

regulation of IFN- transcription in NK and NKT cells (Fujii et al., 1998; Hibbert et al., 

2003). 

T-box family members of TFs are critical for induction of IFN- transcription. 

Tbet, encoded by Tbx21 gene, is a “master regulator” for inducing IFN- transcription 

and Th1 cell differentiation (Szabo et al., 2000).  It acts directly on the Ifng gene to 

facilitate its transcription by binding to multiple sites within the Ifng promoter (Hatton et 

al., 2006).  Indirectly, Tbet up-regulates IL-12R2 expression and inhibits GATA3 

expression (Mullen et al., 2001; Usui et al., 2006). In effector CD8 T cells, Tbet functions 

to sustain Ifng transcription (Sullivan et al., 2003).  The induction of Ifng transcription  by 

Tbet can be synergized by STAT4 as a collaborative effect which also induces IL-18R1 

and IL-12R2 expression (Thieu et al., 2008). Tbet also directly induces TFs, such as 

Runx and Hlx, which work in concert with Tbet in promoting Ifng transcription  and 

reinforcing Th1 commitment (Singh and Pongubala, 2006). Runx3, expressed by Th1 

cells and CD8 T cells, interacts with Tbet and binds cooperatively with it to Ifng 

promoter which in turn activates its transcription (Djuretic et al., 2007).  Like Runx3, Hlx, 

expressed by Th1 cells, also increases expression of IFN by synergism with Tbet, also 

enhancing the expression of Tbet and IL-12R2 (Mullen et al., 2002).  In addition, Tbet 

collaborately works with another T-box family TF, Eomes, to assure proper 

differentiation of naive CD8 T cells (Pearce et al., 2003a).  The function of Eomes on 
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upregulation of Ifng transcription  is independent of Tbet but plays an overlapping role 

with Tbet (Szabo et al., 2002).  

GATA3 is a pivotal TF for induction of IL-4 transcription and differentiation of 

naïve T cells into Th2 cells.  Ectopic GATA3 expression in developing Th1 cells inhibits 

IFN- production while inducing IL-4. Although IL-4 is known to inhibit IFN-

production, inhibition of IFN- production by GATA3 is not dependent on IL-4, as 

previous thought (Yagi et al., 2011). GATA3 suppresses IFN-production by indirectly 

blocking IL-12R2 and STAT4 up-regulation, neutralizing the capacity of Runx3 to 

induce IFN-transcription. It may also play a role in silencing Tbet and Runx3 gene 

expression through chromatin remodeling after direct binding to their genes (Yagi et al., 

2011). It functions in regulation of IFN- expression indirectly via promote the 

commitment of naive T cells to Th2 lineage whereby compete Th1 lineage. It also 

indirectly repress Ifng transcription by binding to TF and may block Ifng transcription or 

recruit other repressors to Ifng (Yagi et al., 2011).   

Epigenetic regulation of IFN- gene transcription 

In principle, TFs regulate Ifng transcription at a number of levels, but in practice 

the fundamental effects of all TFs rely on the capacity to bind to regulatory elements in 

DNA. Facing the challenge of fitting a genome consisting of several billion nucleotides 

into a nucleus of a micron diameter, while maintaining spatial organization and 

accessibility to TFs that govern the transcription, the eukaryotic cells associate DNA with 

proteins in chromatin.  The basic unit of chromatin is the nucleosome, consisting of an 

octamer of histone protein with two copies of H2A, H2B, H3 and H4, around which 
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about 150bp of DNA is wrapped (Felsenfeld and Groudine, 2003).  The control of 

chromatin structure on gene transcription is regulated by DNA methylation and histone 

modification, which encode information without affecting the DNA sequence, termed 

epigenetic regulation.   

The epigenetic regulation of gene transcription is an important mechanism that 

controls transcriptional activation or repression of a gene locus (Spilianakis and Flavell, 

2007), including DNA methylation and histone modifications which result in chromatin 

remodeling (Zhu et al., 2010).  In the following, the mechanism of DNA methylation and 

histone modification is reviewed and their roles in regulation of Ifng are described.  

DNA methylation 

DNA methylation refers to the transfer of a methyl group, S-adenosylmethionine 

(SAM), to the 5 position of the cytosine (C) to form 5-methylcytosine (5meC) by DNA 

methyltransferase (DNMT) (Ansel et al., 2003; Holliday, 2006). The DNA methylation 

suppresses gene transcription either directly by inhibiting TF binding or by allowing 

methyl-CpG-binding proteins (MeCP) to bind to the methylated DNA which ultimately 

“closes” chromatin structure (He et al., 2011; Jones, 2012). The DNA methylation is 

restricted to the symmetric CG context, although non-CG methylation is prevalent in 

embryonic stem cells (Ramsahoye et al., 2000).  While the DNA methylation pattern is 

set up during embryo development, regulating tissue-specific gene transcription 

throughout the genome, the DNA methylation at specific sites is plastic and regulates 

specific gene transcription as a result of a dynamic process involving both de novo DNA 

methylation and demethylation (He et al., 2011). The mechanism of specific site DNA 

methylation and its role in regulation is reviewed below. 
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DNA methylation is induced by three types of DNMTs: DNMT1, DNMT3A, and 

DNMT3B. The existing DNA methylation is maintained by DNMT1 at hemi-methylated 

DNA during DNA replication and cell division, whereas establishment of de novo DNA 

methylation is generated by DNMT3A and DNMT3B (Chen and Li, 2004). The de novo 

DNA methylation is facilitated by DNMT3-like (DNMT3L), a third member of the 

DNMT3 family, which has no catalytic activity (Bourc'his et al., 2001).   

While DNA methylation can be established and maintained, DNA demethylation 

also occurs through passive and active DNA methylation (He et al., 2011). Inhibition of 

DNMT1 during DNA replication in cell proliferation leads to passive DNA methylation 

(Szyf, 2005). However, in other cases, the DNA methylation is removed in active 

demethylation. There is evidence for the existence of DNA demethylase to demethylate 

methyl CpG dinucleotides by directly replacing 5meC with C independent of DNA 

replication (Gjerset and Martin, 1982; Hamm et al., 2008; Hendrich and Bird, 1998). 

Recently, the DNA demethylation mechanism was also postulated to be associated with a 

methylated cytokine removal by DNA repair system (Wu and Zhang, 2010).  

Histone modification-induced chromatin changes in regulation of gene transcription 

Chromatin is not only a DNA scaffold but also regulates the transcription of a 

gene by structural changes in response to external cues. Modification of histones, 

principal component of chromatin, plays a key role in this regulation. There are mainly 

four types of histone modification: acetylation, methylation, phosphorylation and 

ubiquitylation. Among them, histone acetylation and methylation, have critical influences 

on chromatin structure and specific gene transcription, which differ depending on the 

type and location of the modification.  
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The N-terminus of a histone (H2A, H2B, H3 and H4) tail is acetylated by histone 

acetyltransferases (HATs) transfering an acetyl group to a lysine side chain.  The 

acetylation of the histone neutralizes the positive charge of the lysine with the negatively 

charged phosphate groups of DNA as reviewed. As a consequence, the condensed 

chromatin is transformed into a more relaxed structure that is associated with greater 

levels of gene transcription. Relaxed, transcriptionally active DNA is referred to as 

euchromatin. More condensed (tightly packed) DNA is referred to as heterochromatin. 

The lysine acetylation can be reversed by a histone deacetylase (HDAC), which opposes 

the effects of HATs. This action potentially stabilizes the local chromatin architecture 

and is consistent with suppression of gene transcription. The HDAC is considered a 

repressor for gene transcription not only based on its opposite effect of HATs but also on 

induction of final DNA methylation by recruitment of DNMT3 (Feldman et al., 2006). 

Histone methylation mainly occurs on the side chains of lysines and arginines. 

The methylation is catalyzed by histone lysine methyltransferase (HKMT) transfer of a 

methyl group from SAM to a lysine, and the lysine is finally mono-, di- or tri-methylated. 

Whereas, arginine methylation is induced by arginine methyltransferase transferring a 

methyl group to arginine from a variety of substrates to form a mono-, symmetrically or 

asymmetrically di-methylated arginine.  The opposed demethylation of histone which 

occurs depending on the position and the degree of the methylation. In contrast to the 

constant gene transcription activation of histone acetylation, the histone methylation acts 

by both repressing and activating gene transcription based on the type and position of 

histone methylation. In general, H3K4 methylation is associated with active gene 

transcription (Benevolenskaya, 2007; Koch et al., 2007), whereas H3K9 and H3K27 

http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Euchromatin
http://en.wikipedia.org/wiki/Heterochromatin
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methylation is associated with repressive gene transcription (Barski et al., 2007). The 

level of methylation also influences gene transcription, such as mono-methylation of 

H3K9 and H3K27, inducing active gene transcription. In contrast, di- and tri-methylation 

of these histone residues suppresses gene transcription (Barski et al., 2007). Unlike 

acetylation, the demethylation and methylation of histones turns the gene transcription 

“on” and “off”, not relying on the alternating charge of histone protein. It alters the 

chromatin structure by induction of heterochromatin or euchromatin via interaction with 

heterochromatin proteins whereby represses or facilitates gene transcription. For instance, 

H3K9 methylation serves as a binding site for the chromodomain protein 

heterochromatin protein 1 which recruits HDAC and DNMT3, thus generating a form of 

local heterochromatin (Bannister and Kouzarides, 2011). The histone methylation also 

functions in concert with DNA methylation. For instance, the histone demethylase-

induced unmethylated H3K4 promotes de novo DNA methylation by interaction with 

DNMT3L which facilitates the DNA methylation by DNMT3A and DNMT3B (Cedar 

and Bergman, 2009a; He et al., 2011). Mutually, DNA methylation also influences 

histone acetylation and methylation (Bannister and Kouzarides; Cedar and Bergman, 

2009b).  Unmethylated DNA is largely associated with nucleotides that wrap on the 

acetylated histone, and methylated DNA is associated with unacetylated H3 and H4 

histone. This interaction is likely induced by the methyl DNA binding protein via 

recruitment of HDAC (Cedar and Bergman, 2009b).  The DNA methylation also induces 

H3K4 demethylation and H3K9 dimethylation (Cedar and Bergman, 2009b). 
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DNA methylation and histone modification on regulation of Ifng transcription 

Regulation of DNA methylation at specific sites has been reported to be involved 

in regulation of Ifng transcription.  In naïve CD4 T cells and Th2 cells most CpG 

dinucleotides at regulatory elements in Ifng are methylated,  whereas most of the methyl 

groups on CpG dinucleotides are removed in Th1 cells (Chang and Aune, 2007).  

Likewise, there are more methylated DNA in Ifng of naïve CD8 T cells compared with 

effector and memory CD8 T cells (Kersh et al., 2006a).  In addition, no methylation of 

DNA in the Ifng locus has been reported in fresh NK cells which express IFN- 

immediately upon stimulation (Tato et al., 2004).  In accordance, NK cells express 200 

times and memory CD8 T cells expression 20 times more IFN-than naive T cells (Kersh 

et al., 2006a; Matsuda et al., 2003). The importance of DNA methylation in regulation of 

IFN- transcription exists not only in different types of lymphocytes but also exists in 

age-related IFN- transcription. The promoter of the Ifng locus in naïve CD4 T cells is 

hypermethylated in neonatal humans compared to adults (White et al., 2002b).  

Histone modification has also been documented in regulation of Ifng transcription.  

Most of the epigenetic regulation of IFN- transcription occurs at distal transcriptional 

regulatory elements, about 90kb up- and downstream of Ifng. In extremely low IFN-

expressing naïve CD4 T cells, there are lower levels of permissive dimethylated H3K4 

(H3K4
me2

) upstream of Ifng and small amounts of repressive dimethylated H3K27
 

(H3K27
 me2

) downstream of Ifng (Schoenborn et al., 2007). The Ifng locus of dominant 

IFN- expressing Th1 cells gains H3K4
me2

 and loses of H3K27
me2

 including the loci 

around most enhancers and some insulators (Schoenborn et al., 2007).  In contrast, the 
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Ifng locus of Th2 cells obtains the repressive H3K27
 me2

 throughout the locus, including 

loci around promoter and enhancers, except for histone insulator elements (Schoenborn et 

al., 2007).   

The regulation of IFN- transcription in naïve T cell differentiation by alteration 

of DNA methylation, histone acetylation and histone methylation may result from the 

signals induced by TCR and/or cytokine stimulation, and the cascade of TFs binding to 

enhancer or insulator elements.   
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RESEARCH OBJECTIVES 

The following studies were designed based on previous knowledge from other 

species and preliminary studies in equine neonates which have been reviewed in this 

body of work to investigate the effect of environment on IFN expression and the 

underlying regulatory mechanism. While IFN-plays an important role in defense against 

R. equi infection, the relationship between the IFN expression and the R. equi infection 

in foals remained to be clarified. Therefore, the relevance of the age-related IFN-

expression and the age-related susceptibility to R. equi infection in foals was estimated. 

Regulation of IFN-expression has been reported to be controlled by lymphoproliferation 

and DNA methylation in humans and mice, but it is completely unknown in the horse. 

Thus, the role of lymphoproliferation and DNA methylation in regulation of IFN-

expression was investigated. The environment has been observed to have an effect on 

IFN-expression in human neonates, but the effect of environment on IFN-expression 

and the  underlying mechanisms remain unknown in foals.  Therefore, the effect of 

environment on IFN-expression was evaluated and the underlying mechanisms were 

characterized regarding to lymphoproliferation and DNA methylation. Furthermore, the 

environmental effect on the maturation of lung APC phenotype in the foals was 

investigated.  
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CHAPTER TWO 

Age-associated susceptibility to R equi infection in foals  

 

SUMMARY 

Rhodococcus equi (R. equi) pneumonia inflicts a significant economic impact on 

the horse industry worldwide and it is of great concern to equine farms. While adult 

horses are resistant to R. equi, foals exhibit a distinct age-associated susceptibility. 

However, the reason for this unique susceptibility remains unknown.  Humoral and cell-

mediated immunity play an important role in the defense against R. equi infection. 

Antibody production and Th1 immune response is impaired in foals.  Therefore, we 

hypothesize that the susceptibility of foals to R. equi infection is age related and it 

correlates with the ability of specific antibody production post infection and induction of 

basal and R. equi-inducible Th1 cytokines at challenge.  Younger (3 weeks) and older (6 

weeks) foals were challenged with virulent R. equi. The severity of pneumonia on 

necropsy was scored and the culturable R. equi per gram of lung tissue was calculated.  

The conversion of antibodies was determined by VapA-ELISA, basal and R. equi-

inducible Th1 and Th2 cytokine expression in peripheral blood were determined using 

RT-PCR.  The 6-week-old foals were found to be not susceptible to R. equi infection in 

contrast with the 3-week-old foals which were 100% susceptible. Age was inversely 

correlated with the pneumonia score and the bacteria burden in the lung. The age-related 

susceptibility to R. equi infection correlated with the impaired basal and R. equi-inducible 

Th1 cytokine expression. This is likely due to an age-associated change in transcription 

factor expression, although both groups showed the same level of specific antibody 

production post infection. The basal expression of blood IFN- IL-12 and IL-18, and R. 
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equi-stimulated IL-12 and GrzB may be useful as indicators for foals’ risk of R. equi 

infection.  In conclusion, the age-related foals’ susceptibility to R. equi infection is likely 

due to an impaired basal and inducible Th1 immunity at challenge. Future studies on this 

age-related susceptibility in foals less than 3 weeks old are needed. 
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INTRODUCTION 

Rhodococcus equi (R. equi ), an intracellular, gram positive pathogen (Prescott, 

1991), is one of the most important causes of respiratory disease in foals and it is of great 

concern to breeding farms worldwide (Machangu and Prescott, 1991).  The disease ranks 

second behind injury as a leading cause of death in foals less than six months old 

(Giguere et al., 2011a; Prescott, 1991). The infection manifests as subacute or chronic 

pyogranulomatous bronchopneumonia with abscessation and may present associated to 

numerous extrapulmonary disorders, such as pyogranulomatous enterotyphylocolitis and 

polysynovitis (Giguere et al., 2011a).    The costs of treatment and foal losses from 

infection on farms with endemic disease can be substantial (Giguere et al., 2011a; 

Giguere et al., 2011b; Prescott, 1991).   

While adult horses are resistant to R. equi, foals exhibit a distinct age-associated 

susceptibility to R. equi infection. Although all foals are exposed to ubiquitous R. equi in 

the environment, pneumonia is observed almost exclusively in foals less than 6 months 

old, even in farms where R. equi is endemic (Giguere et al., 2011b; Prescott, 1991).  

Studies in adult horses showed that both humoral- and cell-mediated immune responses 

are important to protect against R. equi infection (Giguere et al., 2011a).  Type 1 cellular 

immune response is sufficient to induce clearance of R. equi by IFN- mediated 

enhancement of the killing mechanisms of the infected macrophage, as it increases iNOS 

expression (Dawson et al., 2010).  In addition, the cytotoxic T cell response is key to 

protect against infection by killing infected cells via granzyme B (GrzB) or IFN-  

secretion (Patton et al., 2004a).  The antibody-mediated opsonization also significantly 

enhances R. equi killing by alveolar macrophages (Hietala and Ardans, 1987a). 
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Immunoglobulin G (IgG) promotes R. equi phagocytosis and participates in down-

regulation of intracellular bacterial growth by enhancing phagosome-lysosome fusion 

improving bacterial killing (Cauchard et al., 2004).  

While in adult horses the protective immunity against R. equi infection seems to 

rely on both humoral and cellular immune response, the mechanism of age-associated 

susceptibility in foals remains unknown.  The naivety of the immune response is 

proposed to be a contributor (Dawson et al., 2010).  Foals have delayed endogenous 

synthesis of IgG and IFN- production is significantly reduced for the first 12 weeks of 

age (Breathnach et al., 2006a; Holznagel et al., 2003).  These differences between adult 

and foal immune responses may account for the difference to R equi susceptibility.   

While most studies focus on the immune response post challenge in foals, no studies have 

estimated the basal and R. equi-inducible immune response before challenge and the 

relevance between those immune factors and the foals’ susceptibility to R. equi infection.  

The purposes of this study are to evaluate the relationship between the 

susceptibility to R. equi infection and the age of foals; to estimate the relationship 

between the susceptibility to R. equi infection and the inducible antibody production post 

challenge; and to evaluate the relationship between the susceptibility to R. equi infection 

and basal and stimulated cytokine expression in foals at challenge. These parameters 

were used to estimate the risk of R. equi infection in foals.   Therefore, foals 3 and 6 

weeks of age were challenged with virulent R. equi and the severity of pneumonia was 

evaluated. Serum specific antibodies were determined post challenge, and basal and ex 

vivo R. equi-stimulated Th1 and Th2 cytokine gene expression was determined at 

challenge, as well as GrzB expression.  The relevance of these factors to foals’ 

susceptibility to R. equi infection and severity of pneumonia was evaluated. 
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MATERIALS AND METHODS 

R. equi and culture   

R. equi and culture.  The R. equi 103+ strain obtained from a frozen stock in 20% 

glycerol was streaked onto a Tryptic Soy Agar Yeast Extract (TSAYE).  A single mucoid, 

creamy colony was selected and used to inoculate 4 ml of Tryptic Soy Broth Yeast 

Extract (TSBYE) and the bacterial broth was then incubated at 37°C for 48 hrs.  An 

aliquot of this sample was sent to Kentucky Veterinary Diagnostic laboratory (UKVDL) 

for bacterial identification and PCR test for the presence of VAP.  The optical density of 

the incubated broth was determined by a spectrophotometer at wavelength 540 nm with a 

1/10, dilution of the sample.  This information was used to dilute the culture media into 

PBS to a total volume of 25ml with a concentration of ~4×10
3
 cfu/ml (total challenge 

dose ~1×10
5
 cfu).  At the same time, a serial dilution of the culture media was plated and 

the exact concentration of cfu/ml was calculated.    

Foals and R. equi challenge   

A total of 10 foals were included in the study.  The mares and foals belonged to 

the Department of Veterinary Science’s North Farm at University of Kentucky, 

Lexington, Kentucky.  All research procedures were approved by the Institutional Animal 

Care and Use Committee and Institutional Biosafety Committee and Guide for the Care 

and Use of Agricultural Animals in Research and Teaching.  Foals were included if they 

had a normal complete physical examination (normal thoracic auscultation, normal rectal 

temperature), complete blood count, plasma fibrinogen concentration and thoracic 

ultrasonography, all of which were performed within 48h of birth. The foals were moved 
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to individual stalls after birth and transfer of maternal antibodies was determined using a 

SNAP® test (foals were included if IgG > 800mg/dl). None of the foals received any type 

of plasma or other treatment during the study.  

Foals were challenged at 3 (18 to 24 days, n=3) or 6 weeks (39 to 54 days, n=7) 

of age using 10
5
 cfu. R. equi  per horse via intrabronchial instillation, as previously 

described (Horohov et al., 2011).  Briefly, the foals were sedated and 25 ml of the 

bacteria in sterile PBS were delivered into both main bronchi.  Foals were monitored 

daily for lethargy, inappetence, recumbency, cough, respiratory distress and 

extrapulmonary pathology.  Physical examination and CBC were performed before and 

weekly after challenge for the duration of the study. 

Gross pathology and bacteriology   

The foals challenged at age of 3 and 6 weeks were euthanized and necropsied at 

21 days and 59-63 days post infection (PI) respectively by a board-certified veterinary 

anatomic pathologist. Complete necropsies of all foals were performed at the University 

of Kentucky’s Veterinary Diagnostic Laboratory. The lungs were weighed and the texture 

was scored as either normal, firm and/or consolidated. The pneumonia score was 

calculated as: Score=100×( percentage of firmed lung+percentage of consolidated lung). 

Sterile samples were collected from the cranial apical, middle diaphragmatic, and 

dorsal diaphragmatic regions of the lung.  The tissues were homogenized with sterile 

saline and serial dilutions of 0.025 ml were transferred onto TSAYE plates.  Colonies 

were assessed by their characteristic morphology as gram positive coccobacillus bacterial 

colonies were observed and the culturable R. equi per gram of the lung tissue was 

calculated.   
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ELISA test for serum antibodies against R. equi VAP A   

Serum antibody titers were determined in all foals before (<7 days of age) and 

post challenge using a slightly modified ELISA technique (Prescott et al., 1996). A total 

of 0.2ug/well of recombinant VAP A protein (courtesy Drs. Sturgill and Giguere, 

University of Georgia) mixed in carbonate bicarbonate buffer (C3041, Sigma) was plated 

on a 96 well ELISA plate (Immulon, 14-245-78, Thermo Scientific Inc., Rochester, NY) 

overnight at 4ºC.  The plate was then blocked with 200l of 0.5% polyvinylalkohol (PVA, 

Moviol
®
 6-98, Sigma) - PBS at room temperature (RT) for 1 hr.  To evaluate total IgG, a 

1:100 dilution of the serum was incubated at 37ºC for 1 hr followed by incubation with 

peroxidase-conjugated goat anti-horse IgG (Jackson ImmunoResearch, West Grove, PA) 

at 37ºC for 1 hr.  For IgG subisotype evaluation a 1:25 dilution of the serum was used and 

incubated at 37ºC for 1 hr,  then incubated with antibodies against horse IgGa (CVS48), 

IgGb (CVS39) or IgGT (CVS40) followed by incubation with horseradish peroxidase 

(HRP) conjugated goat anti mouse IgG (Bethyl Laboratories. Inc., Montgomery, TX). 

The plate was washed 3 times with 300l of 0.05% Tween 20-PBS (pH=7.2) after each 

incubation reaction.  The substrate development was performed by a Sur Blue
TM

 TMB 

microwell Peroxidase substrate (52-00-02, KPL, Gaithersburg, MD) at RT for 5 min and 

the reaction was stopped by a 3,3’,5,5’-Tetramethylbenzidine (TMB) stopping solution 

(50-85-05).  Double absorbance was measured at A450 and A630. 

Isolation and stimulation of peripheral blood mononuclear cells (PBMC)     

Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll gradient 

centrifugation, as previously described (Breathnach et al., 2006b), and cultured in RPMI 

1640 media (Gibco, Grand Island, NY), supplemented with 2.5% fetal equine serum 

(FES; Sigma, St. Louis, MO), 2 mM glutamine (Sigma), 100 U/ml 
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penicillin/streptomycin (Sigma) and 55 mM 2-mercaptoethanol (GIBCO).  3×10
6
 PBMC 

were pulsed with phorbol 12-myristate 13-acetate (PMA; 25 µg/ml; Sigma, p8139) 

/ionomycin (iono; 1 µM; Sigma) and brefeldin A (BFA; 10 µg/ml; Sigma) for 4 hrs.   

Isolation and stimulation of BAL cells   

Foals were sedated using xylazine (0.15 mg/kg; Butler Co., Dublin, OH), 

acepromazine (0.01 mg/kgH; Butler Co., Dublin, OH) and butorphanol tartrate (0.01 

mg/kg; Fort Dodge Animal Health, Fort Dodge, IA).  A sterile BAL tube was passed 

through the nasal passage, the trachea, into the distal airway until gently seated.  

Approximately 60 mls of saline (0.9% NaCl; Abbott Laboratories, Chicago, IL) were 

slowly instilled into the lung, then immediately withdrawn and the BAL fluid transferred 

to a sterile flask.  This was repeated until a volume of 150 mls of BAL fluid was 

collected. The fluid was kept on ice until it was processed.  The BAL fluid was 

centrifuged at 400g for 10 min and washed twice with PBS.  The cell pellet was re-

suspended in 10 mls of PBS prior to counting (Vi Cell XR, Beckman Coulter, Brea, CA) 

and the absolute number of viable cells was determined.  4×10
6
 BAL cells were 

stimulated for IFN- production, as described above for PBMC.  

Intracellular staining  

Intracellular staining for IFN-was performed, as previously described (Adams et 

al., 2008; Breathnach et al., 2006b).  Briefly, ~4×10
5
 cells were fixed overnight with 2%-

paraformaldehyde before being permeabilized with saponin buffer (0.1% saponin, 1% 

FBS, 0.1% NaN3).  The cells were stained for IFN-γ by adding 100µl of CC302 (FITC 

conjugated mouse anti-bovine IFN-γ; Serotec, Raleigh, NC) or an isotype control 

antibody (FITC conjugated mouse IgG1, Serotec).  Stained cells were acquired and 

analyzed using a FACS Calibur (BD, Franklin Lakes, NJ).    
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Blood stimulation and mRNA isolation  

Blood (3ml) was collected by venipuncture into two green-top tubes (lithium 

heparin, BD) and a PAXGENE blood RNA tubes (PreAnalytiX, Valencia, CA) from all 

groups of foals at the day before challenge.  180 l of killed R. equi (1×10
9
CFU/ml) was 

aseptically added to one of the green-top tubes and the other was used as control. Both 

tubes were incubated in a humidified incubator for 24 hrs. The blood was then transferred 

to a PAXGENE tube.  All PAXGENE tubes were processed and total mRNA was 

isolated using a manual protocol.  

RT-PCR 

Reverse transcription for total mRNA isolated from the PAXGENE tube was 

performed as described previously (Breathnach et al., 2006a).  The resultant cDNA was 

diluted 1:1 with RNAse-free water.  Gene expression was quantified by an Applied 

Biosystems 7900HP Sequence Detection System (Applied Biosystems, Foster City, CA).  

Intron-spanning equine specific Hlx, Eomes, IFN-, IL-1, IL-2, IL-6, IL-10, IL-12, IL-18, 

TNF, GrzB, GATA3, FoxP3, and Tbet primer/probe sets were designed (Assays-by-

Design, Applied Biosystems).  The primer and probe sequences are shown in table 2.1.  

The selected primers and probes failed to amplify genomic DNA and reverse 

transcription-negative RNA samples and their efficiencies were greater than 95% as 

tested by LinRegPCR (Ramakers et al., 2003). PCR reactions were performed in 

duplicate wells per sample, as described previously (Breathnach et al., 2006a).  The 

efficiency of the amplifications was tested by LinRegPCR and the reactions with 

efficiencies lower than 90% were omitted.  Beta-glucuronidase (b-Gus) was used as a 
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house-keeping gene and the relative quantification (RQ) method for mRNA expression 

was used (Breathnach et al., 2006a).     

Table 2.1 Primer and probe sequences 

Target gene                        Sequence or reference Reference 

IFN- Fwd 

Rev 

Probe 

AGCAGCACCAGCAAGCT 

TTTGCGCTGGACCTTCAGA 

ATTCAGATTCCGGTAAATGA 

 

 

IL4 Fwd 

Rev 

Probe 

TGACTGTAGCGGATGCCTTTG 

GCCCTGCAGATTTCCTTTCCAT 

CTGGCCCGAAGAAC 

 

IL10 Fwd 

Rev 

Probe 

AGGACCAGCTGGACAACATG  

GGTAAAACTGGATCATCTCCGACAA  

CCAGGTAACCCTTAAAGTC 

(Merant et al., 

2009b) 

Tbet Fwd 

Rev 

Probe 

CGGGAAACTAAAACTCACAAACAACA 

GCTCTCCATCATTTATCTCCACAATGT 

ATGTGACCCAGATGATCG 

 

GATA3 Fwd 

Rev 

Probe 

GCCTGCGGGCTGTACTAC 

TGGATCCCTTCCTTCTTCATAGTCA 

AAGCTGCACAATATTAAC 

 

FoxP3 Fwd 

Rev 

Probe 

GGCAGCCACGGAAACAG 

GCATGTTGTGGAACTTGAAGTAGTC 

ACATTCCCAGAGTTCTTC 
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Table 2.1 (continued) 

GrzB Fwd 

Rev 

Probe 

GGACCCGAAGGAAAAGAAGTCTT 

CCTGGATCACGTTCTTACACACAAG 

CCGGAGTCCCCCTTAAA 

 

IL-12 Fwd 

Rev 

Probe 

CTACACCAGCGGCTTCTTCAT 

GCTTCAGCTGCAGGTTCTTG 

CAGGGACATCATCAAACC 

 

IL-18 Fwd 

Rev 

Probe 

CCTGTGTTTGAGGATATGCCTGATT 

GCTAGACCTCTAGTGAGGCTATCTT 

ATTGTACAGACAACGCACCC 

 

IL-6 Fwd 

Rev 

Probe 

GGATGCTTCCAATCTGGGTTCAAT 

CCGAAAGACCAGTGGTGATTTT 

ATCAGGCAGGTCTCCTG 

(Merant et al., 

2009b) 

IL-13 Fwd 

Rev 

Probe 

CCTGGAGTCCCTGAGCAA 

CATCTTCCGCGTGTTTTGGAT 

TCTCCACCTGCAGTGCC 

 

TNF Fwd 

Rev 

Probe 

TTACCGAATGCCTTCCAGTCAAT 

GGGCTACAGGCTTGTCACTT 

CCAGACACTCAGATCAT 

(Quinlivan et al., 

2007) 

-

glucuronidase 

(b-Gus) 

Fwd 

Rev 

Probe 

GCTCATCTGGAACTTTGCTGATTTT 

CTGACGAGTGAAGATCCCCTTT 

CTCTCTGCGGTGACTGG 

(Quinlivan et al., 

2007) 
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Statistical analysis 

All data were analyzed using a commercially available statistical software 

package (Sigma Stat version 10.0; Systat, San Jose, CA).  A Two-way ANOVA was used 

to test the statistical significance for serum antibodies with groups and age of foals as two 

parameters.  Some of the data were log-transformed or rank-transformed to meet the 

assumptions of normality and equal variance.  A student’s t-test was used for statistical 

analysis between two age groups of foals for other assays and the differences were 

considered significant at p < 0.05.  A Mann-Whitney Rank sum test was used if the 

normality test failed to meet the assumption of t-test.  The linear regression was used for 

the analysis of the correlation association, and p<0.05 was considered to be significantly 

correlated.    

RESULTS 

Age-related R equi infection in foals   

The challenge dosage for the 3-week-old foals was 3×10
5
 and for the 6-week-old 

foals was 1.8±1.3×10
5
 cfu per horse. There was no difference in the challenge dose 

between the two groups.  While none of the foals developed clinical signs of disease, R. 

equi was isolated from the lungs of all the foals challenged at 3 weeks old (100%), and 

from one of the foals challenged at 6 weeks of age (14.29%). The younger foals had 

significantly higher numbers of culturable R. equi (4.1±6.9×10
8
 cfu per gram of lung 

tissue) than older foals (140 cfu/gram in older foals) (p=0.038, Table 2.2).  In addition, all 

the younger foals showed pulmonary lesions (100%), whereas only 57.14% of the older 

foals had lung lesions. Three-week-old foals had higher pulmonary lesion scores 
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(p=0.013) when compared with the 6-week-old foals (Table 2.2). The percentage of 

consolidated lung in R. equi challenged foals correlated with the age at challenge 

(p=0.0461, Table 2.3).  A positive correlation between the age at challenge and the 

number of culturable R. equi per gram of lung tissue (p<0.001, Table 2.3) and the 

pulmonary lesion score (p=0.089, Table 2.3) was observed.    

Table 2.2. Age-associated susceptibility to R. equi challenge in foals  

Age of 

foals 

(weeks) 

Dosage of 

challenge 

(×10
5
cfu) 

Infection 

Rate  

(%) 

Lung bacterial 

burden 

(cfu/g lung) 

Percentage of  

foals with 

pulmonary lesion 

Pulmonary 

lesion 

score 

3 3.0 100 4.1±6.9×10
8
* 100 5.1±0.46* 

6 1.8±1.3 14.29 140 57.14 2.9±4.07 

The asterisk indicated a significant difference between the younger and older foals, 

p<0.04. 

 

Table 2.3. The correlation between age of foal and its susceptibility to R. equi infection. 

Correlati

on with 

age 

Bacteria burden in the lung Pulmonary texture Pneumoni

a 

(log (CFU/g lung)) Norma

l (%) 

Firm  

(%) 

Consolidatio

n (%) 

Score 

R
2
 -0.906 0.586 -0.536 -0.640 -0.552 

p <0.001 0.075 0.111 0.0461 0.089 

 Note: The bacteria burden in the lung (log (cfu/g lung)) was given 0 if there were no R. 

equi identified since log(0) is negatively infinite and cannot be compared. 
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Capacity of R. equi specific antibody conversion in response to challenge was not age 

correlated 

 The capacity of sera-conversion (total IgG and its subisotypes IgGa, IgGb and 

IgGT) of foals challenged with R. equi at 3 and 6 weeks of age was determined and 

compared. While no Vap A-specific antibody was observed in either group of foals at 

birth and before challenge (Figure 2.1), a significant increase of total R. equi-specific IgG 

was observed post infection in both groups (p<0.04, Figure 2.1).  There was no difference 

in the antibody production post challenge between the two groups (Figure 2.1).  In 

addition, no difference was observed for specific IgGa and IgGb before or after challenge 

between the two groups (Figure 2.1), though they were significantly elevated post 

challenge.  There was no difference in R. equi-specific IgGT between the two groups of 

foals post challenge or between before and after challenge.  Moreover, no significant 

correlation was found between the serum antibody level and the lung lesion score (data 

not shown). 

 

Figure 2.1. The same level of specific antibody to VapA was observed post R. equi 

challenge in the younger and the older foals.  The blood was drawn from both 3-week-old 

and 6-week-old foals at birth (NB), before challenge (Pre) and 21 days post infection (PI).  
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The sera were collected and the specific total IgG and subisotype IgGa, IgGb, and IgGT 

against VapA were measured by the ELISA with serum dilution of 1:100 for the total IgG 

test and 1:25 for the IgG subisotype test.   

The in vivo basal Th1 cytokine gene expression in foals 

The in vivo basal mRNA expression of Th1, Th2 and Treg cytokines and their 

representative regulating transcription factors (TF) were determined at the day of 

challenge by PCR and the relationships of the gene expression with the number of 

isolated R. equi in the lung tissue and the pulmonary lesion score were analyzed.  There 

was no difference between the two age groups of foals in basal Th1 (IFN- IL-12 and 

IL18), Th2 (IL-4, IL-13) and Treg (IL-10) cytokine mRNA expression (Figure 2.2).  Th1 

cytokines IFN- (p=0.003), IL-12 (p=0.038) and IL-18 (p=0.022) as well as the Treg 

cytokine IL-10 (p=0.011) exhibited a significant negative correlation with the lung lesion 

score (Table 2.4). However, no significant association was found between the Th2 (IL-4 

and IL-13) cytokine and age or lung lesion score (data not shown).  There was a 

significant positive correlation between mRNA expression of GATA3 and FoxP3 

(p=0.003, and p=0.02, respectively) with the pneumonia score and a negative correlation 

(p=0.003 and p=0.005, respectively) with the age of foals (Table 2.4). No correlation was 

observed in Tbet mRNA expression and the age of foals or the pneumonia score (data not 

shown) even though the expression was higher (p=0.017) in the 3 week old foals when 

compared to the 6-week-old foals (Figure 2.2). In addition, there was no correlation 

observed between the pneumonia score (data not show), and the gene expression of any 

inflammatory cytokines (data not shown), although TNF (p=0.011) and IL-6 (p= 0.008) 

exhibited higher at levels in the 3-week-old than in the 6-week-old foals (Figure 2.2).   
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Figure 2.2. The basal cytokine gene expression in vivo in peripheral blood from foals.  

The blood was drawn from both 3- and 6- week old foals into a Paxgene tube.  The total 

mRNA was isolated following reverse transcription and real time quantitative RT-PCT.  

The t-test or Mann-Whitney Rank sum test was used for statistical analysis though the 

graph was drew after two-way ANOVA analysis.  *The mean RQ of the mRNA was 

significantly different between two groups of foals p<0.03. 

Table 2.4. The correlation of basal gene mRNA expression with the age of foals at 

challenge and the susceptibility to R. equi infection. 

Correlation    IFN- IL-12 IL18 GATA3 IL-10 FoxP3 

Age R
2
 No No 0.450 -0.832 No -0.834 

P No  No  0.192 0.003 No  0.005 

Pneumonia 

Lesion Score 

R
2
 -0.803 -0.652 -0.696 0.809  -0.747  0.741 

P 0.003 0.038 0.022 0.003 0.011 0.020 
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The ex vivo R. equi-stimulated cytokine expression in foals 

To evaluate the inducible cellular immune response to R. equi at challenge, the 

Th1, Th2 and Treg cytokine and associated TF mRNA expression by killed R. equi-

stimulated whole blood were determined and their correlation with age and R. equi 

infection was analyzed.  At challenge time point, the stimulated mRNA expression of 

IFN- (p=0.024), IL-12 (p=0.022) and GrzB (p=0.047) was significantly higher in older 

foals when compared to younger foals, though no difference was found in IL-18 and Tbet 

mRNA expression (Figure 2.3). In addition, the inducible IL-12 (p=0.048, p=0.088, 

respectively) and GrzB (association with age, p=0.053; association with pneumonia score, 

p=0.098) expression in response to R. equi stimulation before challenge demonstrated a 

positive correlation with the age and a negative correlation with the developed 

pneumonia score post challenge (Table 2.5).  A significant negative correlation was also 

observed for R. equi-inducible mRNA expression of Tbet and pneumonia score (p=0.039). 

On the contrary, gene expression of cytokine IL-10 (p=0.060) and its representative TF, 

FoxP3 (p=0.033) decreased with age in response to R. equi stimulation (Figure 2.3). 

FoxP3 appeared a negative correlation with age and positive correlation with the 

pneumonia score (p=0.003, Table 2.5).  No difference was found in GATA3 and TNF 

expression between the two groups and no correlation observed between them and age or 

pneumonia score (Figure 2.3 and Table 2.5).  In addition, the mRNA for IL-4 and Il-13 

was undetected in the younger and un-stimulated whole blood of the older foals.  
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Figure 2.3. The ex vivo R. equi-stimulated peripheral blood gene expression in the foals.  

The blood was drawn from foals of 3 and 6 weeks age into pre-heparinized green top 

tubes.  The blood was either stimulated with killed R. equi or nothing (control) for 24 hrs 

then transferred to the Paxgene tubes.  The total mRNA was isolated from the tubes 

followed by reverse transcription and RT-PCR.  The RQ was calculated with the control 

as the calibrator.  The t-test or Mann-Whitney Rank sum test was used for statistical 

analysis while the graph was drawn after two-way ANOVA analysis since the variable of 

RQ and gene was significant differently (p=0.001).  *The mean RQ of the mRNA was 

significantly different between two groups of foals, p< 0.05.  
#
Means RQ of mRNA differ 

between the two groups of foals, p=0.06. 
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Table 2.5. The correlation of ex vivo R. equi-stimulated gene mRNA expression with age 

of foals at challenge and the susceptibility to R. equi infection. 

Correlation    IFN- Tbet IL-12 GrzB IL-10 FoxP3 

Age R
2
 No No 0.636 0.661  -0.777 -0.727 

p No No 0.048 0.053 0.023 0.017 

Pneumonia 

Lesion Score 

R
2
 No -0.656 -0.567 -0.586 No 0.836 

p No 0.039 0.088 0.098 No 0.003 

Note: the “No” means no correlation was detected with p>0.2.   

The in vitro R equi-stimulated IFN- expression by the lung lymphocytes was 

elevated in older foals   

The mean fluorescent intensity (MFI) of IFN--producing BAL lymphocytes in 

response to killed R. equi stimulation from 6-weeks-old foals was significantly higher 

than that of 3-week-old foals (p=0.041, Figure 2.4, upper left), whereas there was no 

difference in MFI of IFN-
+
 lymphocytes with PMA stimulation (Figure 2.4, upper right).  

In addition, the MFI of IFN-
+
 BAL lymphocytes in response to killed R. equi stimulation 

demonstrated a positive correlation with the age of foals (p=0.028, Figure 2.5, upper left).  

No difference was observed between the two groups in the percentage of IFN-
+
 BAL 

lymphocytes with either killed R. equi- or PMA- stimulation (data not shown), and no 

correlation was observed between the percentage of IFN-
+
 cells and the age. Compared 

with BAL lymphocytes, the IFN- production by peripheral blood lymphocytes exhibited 

no difference between the two groups of foals in term of frequency (data not shown) and 

MFI of IFN-
+
 cells neither in response to R. equi or PMA stimulation (Figure 2.4, lower 
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panel).  There was no correlation observed between the production of IFN- and the age 

of foals (Figure 2.5, lower panel). 

 

Figure 2.4. In vitro PMA- or R. equi-stimulated IFN- expression by lymphocytes in 

BAL or PBMC from foals.  The PBMCs and the BAL cells were isolated from foals of 3- 

and 6- weeks- age.  Both cells were stimulated either with PMA/iono for 4 hrs or with 

killed R. equi for 24 hrs.  The IFN- expression was determined with intracellular 
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staining.  The cells were acquired by FACSCalibur and the MFI of IFN-
+
 cells were then 

analyzed.  * The Mean MFI are significantly different between two groups of foals.  

 

Figure 2.5.  Correlation of age and in vitro PMA- or R. equi-stimulated IFN- expression 

by lymphocytes in BAL and PBMC from foals. 

DISCUSSION AND CONCLUSIONS 

While adult horses are resistant to R. equi, foals have a documented distinct 

susceptibility to R. equi infection (Meijer and Prescott, 2004). An age-related 
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susceptibility to R. equi infection has been reported in foals via epidemiological survey 

based on naturally infected cases (Meijer and Prescott, 2004).  In our study using an 

experimental challenge model, 6 week old foals were almost not susceptible to R. equi as 

indicated by the lower rate of isolated R. equi from the lungs, in contrast to the 3-week-

old foals which were all positive to R. equi culture. It could be argued that the lower rate 

of R. equi isolation observed in the older foals may reflect clearance of bacteria that was 

possible because they were euthanized at a later time than were the 3-week-old foals.  

Resistance is also supported by the fact that the older foals had a lower rate of lung 

lesions that were present in all the younger foals. Moreover, the pneumonia score was 

inversely correlated with the age of the foals. Thus, these findings provides for the first 

time direct experimental evidence to support the theory that foals’ susceptibility to R. 

equi infection is age-dependent.    

This susceptibility is proposed to be associated with the naivety of foals’ 

immunity (Breathnach et al., 2006a; Harris et al.; Merant et al., 2009b; Pargass et al., 

2009). While B cells are immunologically competent, their endogenous synthesis and  

production of specific antibodies assisted by helper T cells is impaired in neonatal foals 

(Giguere and Polkes, 2005b).  The specific antibody-induced opsonization is important 

for killing of R. equi by macrophages as it promotes phagosome-lysosome fusion 

(Cauchard et al., 2004). In our study, the same level of R. equi specific IgG was observed 

in both groups of foals after their first encounter with R. equi.  R. equi-specific antibody 

induction was also found in neonatal foals after both experimental challenges and natural 

infection (Hooper-McGrevy et al., 2003; Jacks et al., 2007b).  As no R. equi-specific 

antibodies were detected at birth or before challenge, it can be concluded that the 
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capacity of sera-conversion to R. equi is competent in young foals; hence it may not be 

responsible for foals’ age-dependent susceptibility to R. equi infection.  

The subisotypes of IgG have different functions: IgGa and IgGb opsonize 

microbes and fix complement, whereas IgGT may competitively inhibit the fixation and 

opsonization of IgGa and IgGb, and has weak leukocyte respiratory burst (Lewis et al., 

2008) (Banks and McGuire, 1975; McGuire and Bariso, 1972).  Because of this, IgGa 

and IgGb are considered the most important antibodies against R. equi (Lewis et al., 2008; 

Taouji et al., 2004).  In our study, both groups of foals produced VapA-specific IgGa and 

IgGb antibodies but no IgGT antibodies, similar to what has been reported (Hooper-

McGrevy et al., 2005; Jacks et al., 2007b).  No difference in IgGa and IgGb induction 

between susceptible and non-susceptible foals was observed in our study. This indicates 

that the age-related susceptibility to R. equi is neither due to the inability to produce the 

protective subisotypes of specific antibodies (IgGa and IgGb) nor due to the 

overwhelming induction of detrimental specific antibodies (IgGT).  Additionally, IgG 

subisotypes reflect T-cell responses which influence class switching in B cells, with IgGb 

and IgGT associated with a Th2 (IL-4) response and IgGa associated with a Th1 (IFN-) 

response (Hooper-McGrevy et al., 2003; Jacks et al., 2007b). In our study, both Th1 and 

Th2 subisotypes of IgG were induced properly in 3-week old susceptible foals suggesting 

that an improper humoral immune response to R. equi infection in term of B cell class 

switching and humoral immune response is not responsible for foals’ age-dependent 

susceptibility to R. equi infection.     

While humoral immune response to R. equi challenge appeared appropriate, the 

cell-mediated immune response was impaired as both basal in vivo and ex vivo R. equi-
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stimulated cytokine expression was impaired in younger susceptible foals.  Both Type 1 

and Type 2 cell mediated immunity are immature in foals, represented by impaired Th1 

(IFN-) and Th2 (IL-4) cytokine expression (Breathnach et al., 2006a).  Expression of 

basal IFN- is reduced in foals and in other neonatal mammals (Hines et al., 2003a; 

Kanaly et al., 1996a; Lopez et al., 2002).  Our study shows, for the first time, an inverse 

correlation between basal IFN-mRNA expression in blood and the severity of R. equi 

pneumonia in foals. Thus, the basal in vivo IFN-mRNA in blood may be used in the 

future as a risk indicator of R. equi infection.  In addition, R. equi-stimulated IFN- 

mRNA expression in blood was significantly impaired in susceptible foals at challenge 

when compared to older foals. Similar impaired IFN- mRNA expression was also 

observed in R. equi-stimulated PBMCs from neonatal foals (Liu et al., 2011b; Liu et al., 

2009c) and  in foals post virulent R. equi challenge (Giguere et al., 1999).  In addition, 

IFN- production by R. equi-stimulated BAL lymphocytes in susceptible foals was also 

impaired compared to non-susceptible foals.  The age-correlated IFN- production by 

BAL lymphocytes but not peripheral lymphocytes suggests that the R. equi-stimulated 

IFN- production by BAL lymphocytes is a possible indicator for foals’ risk to R. equi 

infection. The inability to mount a Th1 cytokine response at first encounter with R. equi 

may be due to a higher basal expression of IFN--suppressive TF, such as GATA3 and 

FoxP3, and inability to elevate Tbet expression in response to R. equi infection as 

observed in our study.    

In our study the basal expression of other Th1 cytokines, such as IL-12 and IL-18 

mRNA expression were also impaired in the young foals and were negatively correlated 

with foals’ susceptibility to R. equi infection. The impaired production of IL-12 and IL-
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18 was reported in human neonates and it was thought to be the basis of the deficiency in 

neonatal innate immunity (Levy, 2007; Marodi, 2006a). A similar impaired basal IL-12 

and IL-18 expression was also shown in neonatal foals (Levy, 2007; Marodi, 2006a). In 

addition, R. equi-stimulated IL-12 expression was impaired in the younger R. equi 

susceptible foals compared to the older ones, and had a negative correlation with the foals’ 

susceptibility to R equi infection.   Similar finding was reported when neonatal foals were 

compared with 8-week-old foals (Liu et al., 2009c).  While Th1 cytokines promote 

macrophages killing of R. equi via induced IFN- expression, cytotoxic T cells lyse R. 

equi-infected cells by secreting GrzB (Hines et al., 2001; Hines et al., 2003a; Patton et al., 

2004a).   R. equi specific cytotoxic T cells are absent in 3 week-old foals and appear only 

after 6 weeks of age.(Patton et al., 2005)  Our results support this finding as the R. equi-

stimulated expression of GrzB was observed impaired in susceptible 3-week-old foals. In 

addition, we found that the inability of GrzB expression on respond to R. equi stimulation 

was correlated with the severity of R. equi pneumonia.   Our findings indicate that basal 

expression of blood IL-12 and IL-18, and R. equi-stimulated IL-12 and GrzB may be 

possible indicators of the risk of R. equi infection.    

In contrast to the beneficial effect of the type 1 cellular immune response to R. 

equi, the type 2 immune response was found to be detrimental in mice (Kanaly et al., 

1995a, 1996a) and it was assumed to be detrimental in foals (Dawson et al., 2010).  A 

higher magnitude of IL-10 was observed in foals challenged with a virulent strain of R. 

equi when compared with those infected with a non-virulent strain, hence IL-10 was 

considered to be immunopathogenic.(Giguere et al., 1999)  And the elevation of IL-10 is 

observed in R. equi infected foals but not in adult horses.  A similar trend of increase in R. 
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equi-stimulated IL-10 expression was also observed in this study. However, IL-10 

expression after R. equi stimulation was not correlated with the severity of R. equi 

pneumonia in contrast to basal IL-10 expression which was negatively correlated.  There 

was no correlation between basal IL-4 expression and severity of pneumonia.  This 

indicates that the age-associated severity of R. equi pneumonia is not likely due to the 

elevated basal or inducible elevated Th-2 cytokine expression.  

This study is limited by the age-range of the foals. Studies in younger foals are 

needed to further unveil the mechanism for foals’ susceptibility to R. equi infection. A 

dose that mimics natural infection is needed to further assess the role of Th1 cytokines as 

an indicator in the age-associated susceptibility to R. equi in younger foals.   

Despite these limitations, this is the first estimation of statistical correlation 

between age of foal susceptibility to R. equi challenge and the basal and inducible 

cytokine expression at challenge.  Six-week old foals were seldom susceptible to R. equi 

infection when the experimental model described in this study was used, in contrast to 

that observed in 3-week-old foals. Based on our findings, this age-correlated 

susceptibility to R. equi is probably due to an impaired basal and R. equi-inducible Th1 

cytokine response rather than overwhelming Th2 cytokine expression, and the IFN-

expression is suggested as an indicator for the risk estimation of R. equi infection in 

foals.  This is likely due to the age-related regulation of transcription factors. 
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CHAPTER THREE 

 

The role of proliferation in the regulation of interferon gamma (IFN-γ) expression 

in foals 

Dev Comp Immunol. 2012 Mar; 36(3):534-9.  

Reprinted with permission 

 

SUMMARY 

 Interferon-gamma (IFN-) plays an important role against viral and intracellular 

bacterial infections and its production is deficient in foals.  Cellular proliferation provides 

an opportunity for de novo gene expression, though little is known about its role in 

regulating IFN- expression in foals.  While stimulation of foal peripheral blood 

mononuclear cells (PBMC) with concanavalin A (Con A) increased the frequency of 

IFN-
+
 cells, the overall percentage of IFN-

+
 cells remained below that of adults.  By 

contrast, the proliferative response of foal PBMC was significantly greater than that of 

the adults.  In foals, IFN- production was predominantly associated with those T cells 

that underwent proliferation, whereas in adults non-dividing cells also produced IFN-.  

While treatment with hydroxyurea inhibited cellular division, it failed to completely 

block IFN- production.  This residual IFN- production likely represented memory cells 

as the proportion of these proliferation-independent IFN-
+
 cells increased with foal age.  

However, memory cells may not account for all of the IFN- production as Con A 

stimulation likely provided additional signals that can control IFN- expression. 

 

  

http://www.ncbi.nlm.nih.gov/pubmed/22079897
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INTRODUCTION 

 Interferon gamma (IFN-) plays an important role against viral and intracellular 

bacterial infections by enhancing the microbicidal function of macrophages, increasing 

the cytotoxic  activity of NK cells, driving the differentiation of naïve T cells into Th1 

cells, increasing the activity of cytotoxic T cells and inducing MHC I and MHC II 

expression on infected cells (Lewis and Wilson, 1990).  In mice, the resistance to 

Rhodococcus equi (R. equi) depends on IFN- production by CD4
+
 T cells (Kanaly et al., 

1995b, 1996b).  In adult horses, clearance of virulent strains of R. equi from the lungs is 

also associated with the production of IFN- by T cells (Hines et al., 2003b; Patton et al., 

2004b).  However, IFN- production is deficient in foals (Boyd et al., 2003; Breathnach 

et al., 2006b)  and this deficiency is thought to contribute to their susceptibility to R. equi 

infection (Marodi, 2006b).  Reduced IFN-expression has also been observed in human 

and murine neonates (Lewis et al., 1991; Wilson et al., 1986b).  In human neonates, this 

deficiency increases the risk for infection with Mycobacterium tuberculosis (Aubert-

Pivert et al., 2000).  Thus, IFN- is necessary for the prevention of various infections 

(Gasparoni et al., 2003; Schoenborn and Wilson, 2007), yet little is known regarding its 

regulation early in life. 

While the underlying mechanism responsible for this deficiency in IFN- 

production remains unknown, the immunological naivety of neonates likely plays a role 

since naive T lymphocytes produce IFN- only after undergoing multiple rounds of 

cellular division (Gett and Hodgkin, 1998; Gudmundsdottir et al., 1999).  This is due to 

the fact that the DNA structure in naïve lymphocytes is less accessible for Ifng 
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transcription (Avni and Rao, 2000).  Stimulation of the immune system leads to cellular 

proliferation which provides the opportunity for de novo gene expression (Bird et al., 

1998).  However the role of cellular proliferation in regulating Ifng expression in foals is 

unknown.  Therefore, we examined the relationship between cellular proliferation and 

IFN- expression by foal and adult T lymphocytes in response to mitogen stimulation.  

MATERIALS AND METHODS 

Animals 

A group of 12 foals (2 to 16 weeks old), 10 adult horses (10 years old) and 5 old 

horses (21 to 26 years old) were used in this study.  The horses were housed at the 

Department of Veterinary Science’s equine facility in Lexington, Kentucky.   All horses 

were kept on pasture with ad libitum access to water and forage and handled in 

accordance with the Guide for the Care and Use of Agricultural Animals in Research and 

Teaching.  All research procedures were approved by the University of Kentucky’s 

Institutional Animal Care and Use Committee.  

Peripheral blood mononuclear cells (PBMC) 

Heparinized blood was collected from each horse by aseptic jugular venipuncture.  

Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll gradient 

centrifugation, as previously described (Breathnach et al., 2006b), and cultured in RPMI 

1640 media (Gibco, Grand Island, NY), supplemented with 2.5% fetal equine serum 

(FES; Sigma, St. Louis, MO), 2 mM glutamine (Sigma), 100 U/ml 

penicillin/streptomycin (Sigma), 55 mM 2-mercaptoethanol (GIBCO). 
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Proliferation assays 

 Proliferation was assessed using flow cytometry, as previously described (Adams 

et al., 2008), with minor changes.  Briefly, 1×10
7
 PBMC were suspended in 1ml PBS 

(Sigma,) and stained with 1 ml of carboxyfluorescein succinimidyl ester (CFSE; 5µM/ml, 

Sigma) for 8 min.  The reaction was quenched by adding 2 mls of FBS (Sigma), followed 

by two washes with PBS supplemented with 10 % FBS.  The cell pellet was then re-

suspended in 5 ml of cRPMI media (final concentration of 2×10
6
 cells / ml).  The CFSE –

labeled PBMC were transferred to a 24-well-plate at 1 ml/well.  The cells were then 

stimulated with 3 µg/ml concanavalin A (ConA; Sigma) or incubated with medium alone 

for 4 days.  Afterwards, the cells were washed with FACS Flow and analyzed with a 

FACSCalibur (BD, Franklin Lakes, NJ) flow cytometer.  The Proliferation Index (PI) 

was calculated using ModFit LT
TM

 (Version 3.0, Verity Software House, Inc., Topsham, 

ME).  To inhibit proliferation, CFSE-labeled PBMC were incubated with1mM 

hydroxyurea (HU; Sigma, H8627) for 1 hr at 37 ºC prior to stimulation with ConA, as 

above.  

Surface and Intracellular staining 

Surface staining was performed, as previously described (Merant et al., 2009a).  

Cells were labeled with primary antibodies to CD3 (F6G.3), CD4 (CVS4), CD8 (F18H.2) 

or an IgG1 isotype control (BD Pharmingen™, Sparks, MD) followed by fluorescent 

labeling with secondary antibodies (PE/Cy5.5 conjugated goat Fab’ anti-mouse IgG 

[Southern Biotechnology Associates, Birmingham, AL]).  The PI of lymphocyte subtypes 

was analyzed by gating on the CD3
+
, CD4

+
 or CD8

+
 CFSE-labeled cells within the 

lymphocyte gate during acquisition and analyzing the resulting data using ModFit LT
TM

.  

http://en.wikipedia.org/wiki/Carboxyfluorescein_succinimidyl_ester
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For IFN- analysis, ConA-stimulated PBMC were pulsed with phorbol 12-

myristate 13-acetate (PMA; 25 µg/ml; Sigma, p8139) /ionomyocin (iono; 1 µM; Sigma) 

and brefeldin A (BFA; 10 µg/ml; Sigma) during the last 4 hrs of incubation.  Intracellular 

staining for IFN-was performed, as previously described (Adams et al., 2008; 

Breathnach et al., 2006b) with minor modifications.  Briefly, ~4×10
5
 cells were fixed 

overnight with 2%-paraformaldehyde before being permeabilized with saponin buffer 

(0.1% saponin, 1% FBS, 0.1% NaN3).  The cells were stained for IFN-γ by adding 100µl 

of CC302 (PE conjugated mouse anti-bovine IFN-γ; Serotec, Raleigh, NC) or an isotype 

control antibody (PE conjugated mouse IgG1, Serotec).  Stained cells were acquired and 

analyzed using a FACSCalibur (BD, Franklin Lakes, NJ).  For IFN- staining of T cell 

subsets, surface labeling was performed prior to intracellular staining.  IFN- expression 

by lymphocytes subtypes was analyzed by gating on the CD3
+
, CD4

+
 or CD8

+
 FITC-

labeled cells within the lymphocyte gate during acquisition and then assessing PE 

staining for IFN-.  

Statistical analysis 

 All data were analyzed using a commercially available statistical software 

package (Sigma Stat version 10.0; Systat, San Jose, CA).  Some of the data were log-

transformed or rank-transformed to meet the assumptions of the ANOVA.  Either two-

way ANOVA or two-way ANOVA with repeated measures was used to test for statistical 

significance.  Differences were considered significant at p < 0.05. 

 

 



 

85 
 

RESULTS 

ConA stimulation increase IFN- expression by PBMC in foals 

Since entry into the cell cycle provides an opportunity for gene expression (Bird 

et al., 1998), stimulating PBMC to proliferate has the potential to promote IFN- 

expression (Gudmundsdottir et al., 1999).  Stimulation of adult PBMC with ConA 

significantly increased the percentage of IFN-γ
+
 lymphocytes (Figure 3.1).  While 

stimulation of foal (< 6 weeks of age) PBMC with ConA also increased the percentage of 

IFN-γ
+
 lymphocytes over time, the overall percentage of foal cells producing IFN-γ

 

remained less than that of the adults (Figure 3.1).  
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Figure 3.1. IFN-γ expression by ConA-stimulated PBMC from foals and adult 

horses.  PBMC from 5 foals (≤ 6 weeks , n=4) and adult horses (10yrs, n=4) were 
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stimulated with ConA or medium (Control) for 24, 48 and 72 hrs then pulsed with 

PMA/iono and BFA for the last 4 hrs before intracellular staining for IFN-.  While 

ConA stimulation increased IFN- expression in the adult and foal PBMC cultures, there 

were significantly more IFN- producing cells in the PBMC cultures from adult horses 

compared to those from foals.  *Means differ significantly between ConA and Control at 

p<0.03. 
a,b

 Different letters indicate significant effect of time at p<0.02. 

Proliferative response of lymphocytes changes with foal age 

  To determine if the failure of ConA to induce adult levels of IFN-γ production in 

foals was the result of a reduced proliferative capacity, the proliferation index (PI) of foal 

lymphocytes was compared to that of adult and old horses using flow cytometry.  The PI 

of lymphocytes from the foals were higher than that of adult horses (p<0.05), which were 

higher than the old horses (p<0.005) (Table 3.1).  This enhanced proliferative activity of 

the foals’ cells peaked at 8 weeks of age (p<0.001).  This same pattern was seen with 

both CD3
+
 and CD4

+
 lymphocytes, though proliferation of CD8

+
 cells was not always 

different between adults and foals.  This difference in proliferative capacity was not due 

to a differential dose response, as titration of the mitogen yielded similar results for each 

age group (Figure 3.2).  
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Figure 3.2. Titration of ConA on PBMC proliferation.  

Table 3.1.  Proliferative index by lymphocyte subsets for foals, adult and old horses 

Age Group Lymphocytes CD3 CD4 CD8 

2 weeks foals 5.23±0.84
a,1

 6.58±0.64
a,1

 6.51±0.64
a,1

 5.43±0.64
a,1

 

4 weeks foals 7.09±1.47
a,2

 8.69±0.68
a,2

 8.57±0.68
a,1

 6.64±0.71
a,1

 

8 weeks foals 10.05±1.77
a,3

 11.78±0.71
a,3

 10.85±0.71
a,2

 9.44±0.76
a.2

 

12 weeks foals 8.75±1.28
a,3,4

 10.37±0.76
a,3,4

 10.26±0.76
a,2

 8.24±0.76
a,2

 

16 weeks foals 6.74±1.74
a,4 

 7.41±0.71
a,4

 7.59±0.71
a1

 4.15±0.71
b1,3

 

10 yrs horses 3.41±0.26
a,5

 4.06±0.87
a,5

 4.10±0.87
a,3

 3.69±0.87
a,3

 

>20 yrs horses 1.95±0.19
e,6

 2.10±0.87
a,6

 1.97±0.87
a,4

 1.66±0.87
a,4

 

Means of PI within an age group that are not significantly different share the same letter   

superscript.  Means of PI that are not significantly different within cell populations share 

the same numerical superscript. 
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  Characterization of the divisional history of cells is another method for assessing 

cellular proliferation (Adams et al., 2008).  When the divisional histories of PBMC from 

foals, adults and aged horses were compared, the percentage of parental generation or 

non-dividing PBMC of foals were lower than the adult (p<0.04) and old horses (p<0.001) 

(Figure 3.3).  Aged horses had the greatest percentage of non-dividing cells (p<0.001).  

Within foals, the  3
rd

 generation of cells was the most prevalent in 2 week old foals, 

whereas in older foals the  4
th

 generation of cells were in greater abundance along with 

the 3
rd

 (4, 12 and 16 weeks) or 5
th

 (8weeks) generations.  In adult horses, there was no 

clear peak generation and in old horses the non-dividing cells represented the majority of 

the cells.  
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Figure 3.3. Proliferative Indices of lymphocytes from foals, adult and old horses.  PBMC 

from foals at 2, 4, 8, 12, 16 weeks old (n=5), adult horses (10yrs; n=5) and old horses 

(>20yrs; n=5) were pre-loaded with CFSE, stimulated with ConA for 4 days and then 

analyzed by flow cytometry.   There was a significantly greater frequency of non-

dividing cells (P) in the PBMC cultures from 10 and 20 year old horses compared to the 

foals  (p<0.02) and the non-dividing cells represented the majority of cells in the 20 year 

old horses’ cultures.  In foals, those cells undergoing 3 or more divisions represented the 

greatest proportion of cells in the PBMC cultures (p<0.02). 
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Proliferating T lymphocytes produce IFN- in foals 

  To further characterize the relationship between proliferation and IFN- 

expression, IFN- production by each generation of cells within the CD3
+
, CD4

+
 or CD8

+
 

T cell subsets was determined (Figure 3.4).  For each of the lymphocyte subsets, the 

frequency of non-dividing IFN-
+ 

cells was lowest in foals, regardless of age, when 

compared to adult (p<0.04) and aged horses (P<0.01).  Each of the foals’ lymphocyte 

subsets acquired the ability to produce IFN- only after undergoing cellular division with 

the maximum percentage of IFN-
+
 cells being obtained after 3 or more generations.  By 

contrast, adult horses’ IFN-
 
-producing cells were distributed amongst all generations 

and the parental generation contained the majority of the IFN--producing cells in the old 

horses.  
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Figure 3.4. The percentage of IFN-γ
+ 

cells in each generation of dividing CD3
+
, CD4

+ 
and 

CD8
+
 lymphocytes.   PBMC from foals (2, 4, 8, 12, 16 weeks old; n=5/age group), adult 

horses (10 yrs, n=5) and old horses (>20yrs, n=5) were stimulated with ConA for 4 days 

followed by surface staining prior to intracellular staining for IFN-γ.  There was a 

significantly greater frequency IFN- producing cells of each subset amongst the non-

dividing cells (P) in the PBMC cultures from 10 and 20 year old horses compared to the 

foals  (p<0.05) with the non-dividing representing the majority of IFN-
+
 cells in the 20 

year old horses’ cultures.  In foals, those cells undergoing 3 or more divisions represented 

the greatest proportion of cells producing IFN- for each subset (p<0.05).  The percentage 

of non-dividing (P) IFN-γ
+

 cells labeled with different lower case letters are significantly 

different.  An“*” indicates the generation with significantly greatest number of IFN-γ
+ 

lymphocytes, p<0.05. 

IFN- expression by proliferation-inhibited lymphocytes  

  In order to determine if IFN-γ expression was dependent on DNA synthesis and 

cellular division, hydroxyurea (HU) was used to inhibit proliferation.  HU exerts an anti-

proliferative effect on T cells without impacting cellular activation (Benito et al., 2007; 

Lori et al., 2005)  by inhibiting ribonucleoside diphosphater reductase which converts 

ribonucleotides to deoxyribonucleotides (Lori and Lisziewicz, 1998).  Pretreatment of 

PBMC with HU prevented cellular proliferation in response to Con A such that less than 

5% of the cells underwent cellular division (Figure 3.5).  Nevertheless, the percentage of 

IFN-γ producing cells in these cultures increased significantly from day 1 to day 2 and 

remained elevated through day 4, though the difference between adult horses and foals 

remained (Figure 3.5).  However, proliferation-independent IFN- production by T cell 
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subsets did increase with foal age (Figure 3.6).   Thus, the percentage of CD3
+
 IFN-



cells from foals significantly increased from 2 weeks to 16 weeks (p<0.04) (Figure 3.6), 

though the percentage of IFN- producing CD3
+
 cells at 16 weeks remained lower than 

the older horses (p<0.03).  A similar pattern of age-related increase in IFN- production 

was found in proliferation-inhibited CD4
+
 cells.  In CD8

+
 cells, IFN- production by 

proliferation-inhibited cells from foals increased significantly from 2 weeks to 8 weeks 

(p<0.04), peaking  at 16 weeks (p<0.05) where it reached the level of both adult and old 

horses. 
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Figure 3.5. The effect of hydroxyurea (HU) on proliferation (A,B) and IFN-γ production 

(C,D).  PBMC were isolated from foals (3 months, n=4 ) and adult horses (10 yrs, n=4 ) 

were pre-labeled with CFSE and incubated without or with HU for 1hour at 37ºC, then 

cultured with ConA for 4 days followed by PMA/ionomycin and BFA during the last 4 
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hrs prior to intracellular staining for IFN-γ.  While ConA-stimulated lymphoyctes (A) 

proliferated, HU treatment (B) abrogated this response.  Likewise, two days of ConA 

stimulation significantly increased the percentage of IFN-

 cells in both adults and foals 

(C) and HU treatment reduced the frequency of IFN-γ
+
 lymphocytes in both the adult and 

foals (D).   An “*” indicates significantly different percentage of IFN-γ
+ 

lymphocytes 

between foals and adult horses, p<0.05.  Percentages of IFN-γ
+

 cells at each time point 

labeled with different lower case letters are significantly different for foals.
  
Percentages 

of IFN-γ
+

 cells at each time point labeled with different upper case letters are significantly 

different for adult horses. 

 

Figure 3.6. IFN-γ production by HU-inhibited lymphocytes from foals increases over 

time.  PBMC were isolated from foals (2, 4, 8, 16 weeks old; n=5), adult horses (10 yrs; 
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n=5) and old horses (>20yrs; n=5) and incubated with HU at 37ºC for 1hr and stimulated 

with ConA for 2 days, then pulsed with PMA/iono and BFA for the last 4 hrs.  The cells 

were then stained with antibodies against CD3, CD4 and CD8, separately, before 

intracellular staining with anti-IFN-γ antibodies.  While the youngest foals had fewer 

IFN-
+
 cells amongst the three subsets, older foals had a significantly higher percentages 

of IFN-γ
+
 cells in the CD3

+
 , CD4

+
  and CD8

+ 
lymphocytes and were not different from 

the older horses by 16 weeks of age.   The mean percentages of IFN-
+
 lymphocytes 

within each subset labeled with different letters (lower case, upper case or Greek) are 

significantly different (p<0.05). 

DISCUSSIONS AND CONCLUSIONS 

The production of IFN- by neonates of various species is deficient compared to 

adults (Boyd et al., 2003; Breathnach et al., 2006b; Lewis et al., 1986b; Wilson et al., 

1986b).  This failure to produce IFN- is associated with an increased susceptibility to 

intracellular infections (Gasparoni et al., 2003; Schoenborn and Wilson, 2007).   Cellular 

proliferation provides the opportunity for gene expression by altering DNA structure 

(Bird et al., 1998).   While we observed elevated IFN- expression by ConA-stimulated 

lymphocytes in both foals and adults, the overall foal response remained lower.  One 

possibility for this reduced response could have been decreased proliferation by the foals’ 

PBMC.  Human neonatal lymphoyctes have reduced proliferative responses to ConA 

stimulation compared to those of older children and adults (Gasparoni et al., 2003).  This 

same pattern of reduced proliferative activity was also reported for neonatal guinea pig 

lymphocytes (Jones et al., 1996).  However, a higher proliferative response has been 
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reported for bronchial lymph node cells and PBMC of foals (Flaminio et al., 2000a; Jacks 

et al., 2007a).   Here, we likewise found that PBMC from foals exhibited an enhanced 

proliferative response to ConA when compared to older horses.   By characterizing the 

divisional history of the proliferating cells we also determined that most of the foal 

PBMC proliferated in response to the mitogen, whereas in adults a significant portion of 

the cells remained in the parental, non-dividing population.  This was not the result of 

differential responsiveness to the mitogen as the dose response curves were identical.  

The reasons for this enhanced proliferative response of foal PBMC to mitogens are 

unknown and could reflect species’ differences in the regulatory mechanisms that control 

lymphocyte proliferation in neonates.  Human neonate lymphocytes produce elevated 

levels of IL-10 which could account for their reduced proliferative activity (Belderbos et 

al., 2009b).  While it was initially reported that PBMC from foals produced elevated 

levels of IL-10 mRNA (Sponseller et al., 2009b), another report indicated reduced 

expression of this cytokine (Wagner et al., 2010).  The role of IL-10 and other factors in 

the regulation of the lymphoproliferative activity of foal PBMC remains to be determined.   

While a proportion of the adult T cells failed to proliferate in response to Con A 

stimulation, they were capable of producing IFN-.  This was particularly true for those T 

cells collected from aged horses, as previously described (Adams et al., 2008), and likely 

reflects a memory T cell population which does not require proliferation for IFN- 

production (Kersh et al., 2006b).  In foals, the relatively few cells that failed to divide 

also did not produce IFN-whereas those lymphocytes undergoing multiple cellular 

divisions did produce this cytokineThis probably reflects there being mostly naïve T 

cells in the foal’s circulation and naive T lymphocytes produce IFN- only after 
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undergoing multiple rounds of cellular division (Gett and Hodgkin, 1998; 

Gudmundsdottir et al., 1999).   

The memory T cells in the adult and older horses likely accounted for the 

proliferation-independent IFN- production seen in the HU-treated cultures.  While HU-

treatment significantly reduced IFN- production in the foals’ PBMC cultures, the 

percentage of cells making this cytokine did increase over time.  This proliferation-

independent IFN- production might also be attributed to memory T cells, as these cells 

would be expected to increase with foal age.  Indeed, as the foals aged there was an 

overall increase in this activity.   

Memory cells may not account for all of the IFN- production as inhibition of 

cellular division does not always prevent cytokine production in naïve T cells (Ben-

Sasson et al., 2001).  Since HU inhibits cellular proliferation without impacting cellular 

activation (Benito et al., 2007; Lori et al., 2005; Lova et al., 2005), Con A stimulation of 

HU-treated cells likely provided additional signals that control IFN- expression.  For 

example, transcription factors (TFs) play an important role in the regulation of Ifng 

expression with GATA3 decreasing and Tbet promoting the transcription of IFN-  

(Grogan and Locksley, 2002).  The inability to up- regulate Tbet and down-regulate 

GATA3 is associated with lower IFN- expression (Cheng et al., 2009; Yu et al., 2003).  

Thus, it is possible that the reduced IFN- expression by proliferating foal lymphocytes 

may be due to higher expression of GATA3 and/or lower expression of Tbet in response 

to ConA stimulation.   Differences in transcription factor expression could also account 

for the increased IFN- expression in the CD8
+
 T cells from the youngest foals.  Naïve 
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CD8
+
 T cells express eomesodermin, a TF that induces IFN- mRNA synthesis in the 

absence of cellular division (Araki et al., 2008; Pearce et al., 2003b; Takemoto et al., 

2006).  Also, CD8
+
 T cells do not require Tbet for IFN- expression as do CD4

+
 T cells 

(Szabo et al., 2002).  Differences in DNA structure of CD4
+
 and CD8

+
 naïve T cells has 

been reported (White et al., 2002a) and this could limit accessibility of TF to their 

binding sites in the Ifng locus.  Thus, the control of IFN- expression by CD8
+
 T cells 

appears less rigorous and cell division less essential when compared to CD4
+
 T cells.  

Our results are consistent with this differential mechanism for the regulation of IFN- 

expression in foal CD8
+
 T cells. 

In conclusion, while PBMC from foals exhibit higher proliferative responses to 

ConA, their overall IFN- expression nevertheless remained lower than that of adult 

horses.  This is likely due to fewer memory T cells in foals, limited accessibility to 

regulatory elements on Ifng loci, or reduced availability of TFs.  Future studies on 

epigenetic regulation and TFs expression are needed to better understand the mechanism 

underlying IFN- deficiency in foals. 
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CHAPTER FOUR 

 

The hypermethylation of IFN- gene promoter is correlated with IFN- expression 

in the neonatal foals 

Dev Comp Immunol. 2012 Oct 11 

Reprinted with permission 

 

SUMMARY 

While born with a limited production, foals’ interferon-gamma (IFN-γ) expression 

increases after birth.  The underlying mechanisms remain unknown.  DNA methylation is 

considered to be involved in.  Therefore, the DNA methylation status of the Ifng 

promoter in CD4
+
 cells from neonatal foal was determined using a methylation-specific 

PCR (MSP), and its relevance to IFN- mRNA expression was estimated.  The effect of 

environment on the DNA methylation was also evaluated by comparing ponies that were 

kept in a barn versus those on pasture.  The DNA in the Ifng promoter was 

hypermethylated and its demethylation was correlated with an increase in IFN- mRNA 

expression and age.  This age-associated demethylation was accelerated by barn-air 

exposure.  In conclusion, IFN- expression in foals appears to be controlled by DNA 

methylation in promoter of Ifng.  The age-associated demethylation of the DNA in foals 

may be induced by exposure to environmental antigens and their effect on 

lymphoproliferation. 

 

  

http://www.ncbi.nlm.nih.gov/pubmed/22079897
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INTRODUCTION 

Interferon-gamma (IFN-) expression is reduced in neonates of most species 

(Vuillermin et al., 2009a), including foals (Breathnach et al., 2006b).  This reduced 

expression is associated with an increased risk for intracellular bacterial infections, such 

as those caused by Rhodococcus equi (R. equi).    This depressed IFN- expression in the 

neonate is likely the consequence of a protective strategy against fetal loss caused by 

IFN- production at the fetal/maternal interface (Murphy et al., 2009).  The expression of 

IFN- mRNA correlates with protein production in foals indicating its expression  is  

regulated at the transcriptional level (Breathnach et al., 2006b).  However, the underlying 

regulatory mechanisms are unknown.  DNA methylation, induced by DNA 

methyltransferase (DNMT), is widely accepted as a primary mechanism for regulating 

gene transcription (Ansel et al., 2003; Holliday, 2006).  Methylation inhibits gene 

transcription either directly by inhibiting transcription factor (TF) binding or by allowing 

a methyl-binding protein to bind to the methylated DNA which ultimately “closes” 

chromatin structure (Spilianakis and Flavell, 2007).  In the case of humans and mice, the 

degree of methylation of the promoter determines the level of IFN- expression 

(Spilianakis and Flavell, 2007; Wilson et al., 2009).  Thus, hypermethylation of the CpG 

motif in the Ifng promoter region results in limited IFN- expression in human neonates 

(White et al., 2002b).  Reduced IFN- expression in neonatal foals may likewise be the 

result of DNA hypermethylation.   

 In foals, as in other neonates, IFN- expression increases rapidly after birth 

(Breathnach et al., 2006b).  This temporal increase in IFN- expression is accelerated by 
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exposure to environments containing high levels of bacterial and fungal antigens (Sun et 

al., 2011).  While it is postulated that DNA methylation of Ifng may be altered by 

environmental exposure to microbial antigens, there is little evidence available to support 

this hypothesis (Vuillermin et al., 2009a).  Therefore, we examined the methylation status 

of the promoter region of Ifng in the foal in order to correlate methylation status with Ifng 

expression.  We also determined the effect of the environmental exposure to microbial 

antigens on the methylation status of the foals’ Ifng promoter.  Lastly, we determined the 

effect of the environment on lymphoproliferation since proliferation is reported to 

regulate DNA demethylation (Wilson et al., 2009).   

MATERIALS AND METHODS 

Horses  

A group of 12 horse foals (2 to 16 weeks old) and four adult horses (6 to10 years 

old) were used to determine DNA methylation level in the equine IFN- promoter.  The 

horses were housed at the Department of Veterinary Science’s equine facility in 

Lexington, Kentucky.  Another group of 10 pony foals were used for the study of 

environmental effects on the DNA methylation, along with 2 adult ponies (6 and 8 years 

old).  The foals were maintained on the University of Kentucky’s Department of 

Veterinary Science’s farm in Versailles, Kentucky.  Five of the pony foals were chosen 

randomly at birth to spend 4 hours a day for 3 days (MWF) per week in individual stalls 

with their mares. This barn exposure started when the foals were less than 1 week old and 

stopped after they reached 2 months of age.  When not in the barn, the foals were kept on 

pasture with their mares.  Throughout the study period, the ponies, as well as the horses 
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above, had ad libitum access to water and forage in accordance with the Guide for the 

Care and Use of Agricultural Animals in Agricultural Research.  All research procedures 

were approved by the University of Kentucky’s Institutional Animal Care and Use 

Committee.  

Lymphocytes isolation and cell sorting 

 Heparinized blood was collected from each horse by aseptic jugular venipuncture.  

Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll gradient 

centrifugation, as previously described (Breathnach et al., 2006b).  The cells were 

resuspended in cRPMI 1640 media (Gibco, Grand Island, NY) supplemented with 2.5% 

fetal equine serum (FES; Sigma, St. Louis, MO), 2 mM glutamine (Sigma), 100 U/ml 

penicillin/streptomycin (Sigma), 55 mM 2-mercaptoethanol (GIBCO) and surface stained 

for CD4, as described (Merant et al., 2009b).  The cells were labeled with primary 

antibodies to CD4 (CVS4) or an IgG1 isotype control (BD Pharmingen™, Sparks, MD) 

followed by fluorescent labeling with secondary antibodies (PE conjugated goat Fab’ 

anti-mouse IgG [Southern Biotechnology Associates, Birmingham, AL]).  The CD4
+ 

cells 

were then sorted by a Cytomation MoFlo® high-speed cytometer cell sorter and analyzer 

from Cytomation (Fort Collins, CO) as gated (Figure 4.1). 

 

Figure 4.1. Sorting CD4
+
 cells. The PBMCs were isolated and surface stained for CD4 

molecules.  The stained cells were analyzed and sorted with Cytomation MoFlo® high-

http://www.cyto.purdue.edu/cdroms/cyto3/7/cytoma/moflo.htm
http://www.cyto.purdue.edu/cdroms/cyto3/7/cytoma/moflo.htm
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speed cytometer.  The single cells, gated by pulse width (a); with few granularity, gated 

by lower SSC (b); and RPE fluorescent, gated by FL2 positive (c and d), were sorted as 

CD4
+
 lymphocytes.   

Quantitation of cellular proliferation and IFN- expression 

Proliferation was assessed using flow cytometry, as previously described (Sun et 

al., 2012).  Briefly, 1×10
7
 PBMC were suspended in 1ml PBS (Sigma) and stained with 1 

ml of carboxyfluorescein succinimidyl ester (CFSE; 5µM/ml, Sigma) for 8 min.  The 

reaction was quenched by adding 2 mls of FBS (Sigma), followed by two washes with 

PBS supplemented with 10 % FBS.  The cell pellet was then resuspended in 5 ml of 

cRPMI media (final concentration of 2×10
6
 cells/ml).  The CFSE – labeled PBMC were 

transferred to a 24-well-plate at 1 ml/well.  The cells were then stimulated with 3 µg/ml 

concanavalin A (ConA; Sigma) for 4 days.  Afterwards, the cells were washed with 

FACS Flow and analyzed with a FACSCalibur (BD, Franklin Lakes, NJ) flow cytometer.  

The Proliferation Index (PI) was calculated using ModFit LT
TM

 (Version 3.0, Verity 

Software House, Inc., Topsham, ME).   

For IFN- analysis, ConA-stimulated PBMC were pulsed with phorbol 12-

myristate 13-acetate (PMA; 25 µg/ml; Sigma, p8139) /ionomycin (iono; 1 µM; Sigma) 

and brefeldin A (BFA; 10 µg/ml; Sigma) during the last 4 hrs of incubation.  Intracellular 

staining for IFN-was performed, as previously described (Sun et al., 2012).   

RT-PCR 

Total cellular RNA was isolated from 1×10
6
 cells preserved in RNA-STAT 60 

(Tel-Test, Inc. Friendswood, TX) according to the manufacturer’s protocol.  Reverse 

http://en.wikipedia.org/wiki/Carboxyfluorescein_succinimidyl_ester
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transcription was performed as described previously (Breathnach et al., 2006a).  The 

resultant cDNA was diluted 1:1 with RNAse-free water. The gene expression was 

quantitated using an Applied Biosystems PRISM 7900HT Sequence Detection System 

(Applied Biosystems, Foster City, CA).  Intron-spanning equine IFN-primers and probe 

failed to amplify genomic DNA and reverse transcription negative RNA samples 

(Breathnach et al., 2006b) and their amplification efficiencies were greater  than 95% , as 

determined using LinRegPCR (Ramakers et al., 2003).  PCR reactions were performed in 

duplicate wells per sample, as described previously (Breathnach et al., 2006a).  Beta-

glucuronidase (b-Gus) was used  as the housekeeping gene and the relative quantification 

(RQ) method for  mRNA expression was used (Breathnach et al., 2006a). 

Methylation specific PCR (MSP) 

 The likely promoter region of equine Ifng was predicted using promoter 2.0 

prediction server (http://www.cbs.dtu.dk/services/Promoter/).   Based on the CpG sites, 

the three sets of MSP primers were designed by Methprimer 

(http://www.urogene.org/methprimer/index1.html) and synthesized by Integrated DNA 

Technologies, Inc. (IDT, Coralville, IA).  The primers sequences are listed in Table 4.1.   

 

 

 

 

 

http://www.cbs.dtu.dk/services/Promoter/
http://www.urogene.org/methprimer/index1.html
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Table 4.1. MSP primer sequences
a
 

Specificity Primers         

               Set 1                                    Set 2                                       

Set 3 

  

 

m
CpG Fwd  ATGAAGAATTT

TTTTATTATATC

GG 

GTATAATGGGT

TTGTTTTATCGT 

GTAGTATATTTT

TTTGATCGTCGG 

 Rev CGTTAATCATTT

ATTTATAATCGT

A 

ATTAAAATCTC

ATCAAAATTAC

GTA 

AATAAAACTTA

TATAATTCATTA

TTTCGAA 

 Product 160 bp 179 bp 151 bp 

u
CpG Fwd  ATGAAGAATTT

TTTTATTATATT

GG 

GGTATAATGGG

TTTGTTTTATTG

T 

GGTAGTATATTT

TTTTGATTGTTG

G 

 Rev CACATTAATCAT

TTATTTATAATC

ATA 

ATTAAAATCTC

ATCAAAATTAC

ATA 

AATAAAACTTA

TATAATTCATTA

TTTCAAA 

                    Product 162 bp 180 bp 152 bp 

a
Methylated- and unmethylated-specific primers were designed for three regions 

within the Ifng promoter predicted to be involved in the epigenetic regulation of this gene.  

Predicted amplicon size for each product is also indicated for each primer set. 
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Genomic DNA was isolated using Gentra Puregene Cell Kit (QIAGEN, Valencia, 

CA) and 400 ng of the DNA was bisulfite treated using EZ DNA Methylation-Gold™ Kit 

(D5005, Zymo Research Corporation, Irvine, CA).  The real time PCR was performed in 

duplicate for each sample with 2 mM of specific primers for methylated CpG (
m

CpG) or 

un-methylated CpG (
u
CpG), 30 ng of bisulfite converted genomic DNA as template, and 

10 l of PCR reaction mix (QuantiTec 
®
 SYBR

®
 Green PCR Kit, QIAGEN),  in a total of 

20 ls.  The PCR reaction conditions were as follows: pre-heat at 95ºC for 15 min; 10 

cycles of touch-down PCR with 95 ºC 30 s, 60 ºC 30 s (-0.5 ºC per cycle) and 72 ºC 30s; 

40 cycles of amplification with 95 ºC 30 s, 55 ºC 30 s 72 ºC 30s, 60 ºC 45s (signaling); 

72ºC 10 min for final elongation followed by determination of dissociation curve.  

Completely methylated genomic DNA generated by methyltransferase (M0226, New 

England Biolabs, Ipswich, MA) from genomic DNA was used as a positive control, and 

the completely un-methylated genomic DNA generated using GenomiPhi DNA 

Amplification Kit (25-6600-30, GE healthcare, Piscataway, NJ) was used as a negative 

control.   The Ct values were corrected using LinRegPCR, with efficiencies below 90% 

excluded.  The percentage of CpG methylation for each region of Ifng promoter was 

calculated as 
m

CpG%= (2
-CtmCpG 

/ (2
-CtmCpG

 +2
-CtuCpG

)) ×100%. 

Total DNMT activity test 

Nuclear protein was extracted from CD4
+
 T cells using EpiQuik

TM
 Nuclear 

Extraction Kit I (P-0002, Epigentek Group Inc., Farmingdale, NY).  The protein was 

aliquoted and stored at -80°C.  The concentration of the nuclear protein was determined 

using a BCA protein Assay Kit (23225, Fisher Thermo Scientific Inc., IL) and the total 

DNMT activity of the protein was determined using EpiQuik
TM

  DNA Methyltransferase 
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Activity/Inhibition Assay Kit (P-3001, Epigentek Group Inc.).  The assay determines the 

quantity of 
m

CpG transferred by the DNMTs using an indirect ELISA with 
m

CpG specific 

antibodies.  The DNMT activity was calculated using the formula: Total DNMT Activity 

(OD/h/mg) = (ODsample - ODblank)/ (protein (g) ×incubation time (hour)) ×100% 

Statistic analysis 

 All data were analyzed using a commercially available statistical software 

package (Sigma Stat version 10.0; Systat, San Jose, CA).  Student’s t-test was used to test 

the significance between foals and adult horse samples.  Linear Regression was used to 

determine the correlation between DNA methylation, age and IFN- expression.  A Two 

Way ANOVA was used to test for statistical significance with age and environment as 

the two factors.  Some of the data were log-transformed or rank-transformed to meet the 

assumptions of normality and equal variance.  Differences were considered significant at 

p < 0.05.   

RESULTS 

Optimization of MSP reaction condition 

 Using our optimized touch-down PCR reaction conditions, the three sets of 
m

CpG 

specific primers only amplified methylated the but not unmethylated
 
genomic DNA 

(Figure 4.2 a, b and c), while, the 
u
CpG specific primers only amplified the unmethylated 

genomic DNA (Figure 4.2 d, e and f) with only a single amplification product generated 

for each primer pair (Figure 4.2 g, h and i). 
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Figure 4.2. Verification of specificity of MSP primers.  The genome wide methylated and 

the unmethylated genomic DNA were used as the templates for MSP to test the 

specificity of 
m

CpG (upper panel) or 
u
CpG (middle panel) specific primers in three region 

of Ifng promoter, region 1 (left panel), region 2 (middle panel) and region 3 (right panel).  

Three 
m

CpG specific primers, set 1(a), set 2 (b) and set 3 (c), only amplified methylated 

genomic DNA but not unmethylated genomic DNA.  Whereas, 
u
CpG specific primers, set 

1 (d), set 2 (e) and set 3 (f), only amplified unmethylated genomic DNA.  A single 

melting curve was obtained for each primer pairs and MSP products (g, h and i).   
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DNA hypermethylation in the promoter region of IFN- is correlated with age and 

IFN- expression 

 DNA methylation at three locations within the IFN-promoter region was 

determined. Region one (-539, -420 and -399), region two (-254 and -118), and region 

three (-47, -44 and +58) were analyzed using the three sets of methylated and 

unmethylated DNA specific primers.  While methylation at IFN-promoter region one in 

neonatal foals was over 99.9%, it was not significantly higher than that of adult horses 

(p=076, Figure 4.3 a).  DNA demethylation in region one was not correlated with age 

(p=0.244, Figure 4.3 b).  While there was a trend for demethylation in region one to 

correlate with IFN- expression, this was not statistically significant (p=0.058, Figure 4.3 

c).  Region two of the Ifng promoter was also found to be more methylated in foals than 

that of adult horses (p=0.007, Figure 4.3 d), but the demethylation of the DNA was not 

associated with IFN- expression (p=0.064, Figure 4.3 f) though it was inversely 

correlated with horses’ age (p=0.003, Figure 4.3 e).  Similarly, DNA methylation was 

significantly increased in the third region in neonatal foals when compared to adult 

horses (p=0.004, Figure 4.3 g).  Nevertheless, DNA demethylation in this region was not 

only inversely correlated with age (p<0.001, Figure 4.3 h) but also with IFN- expression 

(p=0.042, Figure 4 i).  These results indicate that this region of the Ifng promoter plays an 

important role in the regulation of IFN- expression in horses. 
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Figure 4.3. DNA hypermethylation in the promoter region of IFN- in neonatal foals and 

its correlation with mRNA expression and age.  The DNA methylation in Ifng promoter 

of CD4
+
 cells from foals and adult horses was compared (a, d, and g) and its relationship 

with age of horses (b, e, and h) and IFN- mRNA expression (c, f, and i) was estimated. 

DNA methylation of the Ifng promoter is not associated with total DNMT activity 

 Since DNA methylation involves the transfer of a methyl group to CpG by 

DNMTs, total DNMT activity was determined in CD4
+
 T cells from foals and adult 

horses.   DNMT activity was found to be lower in foals CD4
+
 cells, higher in those from 

adult horses (Figure 4.4, left panel), and correlated with horse age (Figure 4.4, right 

panel).  However, there was no association found between the DNMT activity and the 

degree of DNA methylation in the three regions of the Ifng promoter (data not shown).  
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There was also no relationship between DNMT activity and IFN- mRNA expression 

(data not shown). 

 

Figure 4.4. The activity of total DNMTs was higher in foals.   The nuclear protein was 

extracted from CD4
+
 T cells in both foal and adult horses and the DNMT activity was 

then measured and compared.  The activity of total DNMTs was significantly higher in 

foals than in adult horses (left panel), and the activity was significantly correlated with 

age (right panel).  *Mean of DNMT activity was significantly different between the two 

groups of horses, p=0.014. 

The effect of environment on DNA demethylation, lymphoproliferative activity and 

IFN- expression by PBMC 

 Since lymphoproliferation provides the opportunity for DNA demethylation, we 

determined the effect of environment on lymphoproliferation, IFN- expression and 

promoter methylation.  The proliferative response to ConA was significantly increased 

for those foals exposed to barn air for 8 weeks when compared to foals kept on pasture 
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(Figure 4.5, upper panel).  A similar pattern was seen regarding IFN- expression (Figure 

4.5, lower panel).  The percentage of IFN-
+
 lymphocytes was significantly increased in 

foals with 8 weeks of barn air exposure when compared to that of foals with pasture only 

exposure (p=0.029, Figure 4.5, lower panel).  The effect of foal environment on DNA 

methylation was also determined for foals exposed to barn air versus those on pasture.  

The DNA in Ifng promoter region (-47bp, -44bp and +58bp) was hypermethylated in 

both groups of foals compared with adult ponies (p<0.001, Figure 4.6 right panel).  

However, those foals exposed to barn air reduced DNA methylation compared with those 

on pasture at 12 weeks of age (Figure 4.6 right panel).  No difference in DNA 

methylation was found between the two groups of foals at the other two promoter regions 

(Figure 4.6, left and middle panel).   
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Figure 4.5. Environment effect on lymphoproliferation and IFN- expression in foals.  

Both PI (upper panel) and the percentage of IFN-
+
 cells (lower panel) were increased in 

the foals with barn-air exposure.  *Means of PI or percentage of IFN-
+
 cells was 

significantly different between two groups of foals p<0.03; 
#
Means of percentage of IFN-


+
 cells was different between two groups of foals  p=0.062.   
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Figure 4.6. Environment effect on DNA methylation in Ifng promoter.  The DNA 

methylation level at three regions in Ifng promoter was determined and compared 

between barn-air and pasture-air exposed foals and versus adult horses.  DNA in region 1 

and 3 in Ifng promoter exhibited a higher level of methylation in both groups of foals 

compared with adult horses.  The DNA in region 3 was demethylated in foals with barn-

air exposure compared with foals with pasture-air exposure (right panel), while no 

difference in DNA methylation in region 1 (left panel) and 2 (middle panel) was observed.  

*Means of percentage of 
m

CpG was different between two groups of foals p<0.001.  

#
Means of percentage of 

m
CpG differed between adult horses and foals, p<0.001.  

DISCUSSIONS 

Gene expression is negatively correlated with the level of DNA methylation in the 

promoter region of many genes (Law and Jacobsen, 2010).  The methylation of CpG 
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either directly blocks TF binding or recruits methyl-binding proteins that indirectly 

interfere with TF binding thereby preventing initiation of gene expression.  Accumulating 

evidence has implicated CpG methylation in the IFN- promoter region as an important 

negative transcriptional regulator of IFN- gene expression in humans and mice 

(Spilianakis and Flavell, 2007; Wilson et al., 2009) Here, we report for the first time that 

the degree of DNA methylation in the equine IFN- gene promoter region (around -47, -

44 and +58) affects mRNA expression of IFN- in young horses.  Similarly, DNA 

methylation at -54 CpG site in the human Ifng promoter region controls mRNA 

expression.  As in humans, the CpG site at -47 and -44bp on Ifng in horses encompasses a 

possible transcription initiation site around a TATA box.  Thus, this region likely plays a 

key role in the regulation of IFN- expression in horses.   

While DNA in this proximal promoter region is hypermethylated in neonatal foals, 

it is less so in adult horses.  These findings are in concurrence with data indicating that 

the DNA in the proximal IFN- promoter is hyper methylated in neonatal humans while 

hypomethylated in adults (White et al., 2002b).  What induces this age related 

demethylation of DNA is unknown.  Since methylation of DNA involves DNMTs 

transfer of a methyl group to CpG during DNA replication, decreased DNMT activity 

could be associated with reduced methylation.   However, the total DNMT activity was 

found not to be correlated with either the degree of DNA methylation of the Ifng 

promoter or IFN- mRNA expression.  This indicated that DNA methylation of the Ifng 

was likely not regulated by total DNMT activity, though we cannot exclude the 

possibility of an effect on a specific DNMT (Pradhan and Esteve, 2003; Svedruzic, 2008; 

Ting et al., 2006). 
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The external mechanism driving the age-associated DNA demethylation of the 

Ifng promoter was also examined.   Here, we observed increased DNA demethylation in 

the IFN- loci of foals with barn air exposure when compared with similar aged foals 

kept on pasture.  We have previously reported that exposure to barn air enhanced IFN- 

expression (Sun et al., 2011).  Since there are significantly higher number of culturable 

bacteria and fungi in barn air versus pasture (Sun et al., 2011),  exposure to these 

microbial components could lead to the demethylation of the Ifng promoter .  Infection 

with viral, bacterial and parasitic agents is known to induce DNA demethylation 

(Vuillermin et al., 2009a).  While the mechanisms involved in environmental regulation 

of DNA methylation remains unknown, it is known that proliferation of naïve T cells is 

required for the initial transcription of the Ifng locus (Ansel et al., 2003; Bird et al., 1998; 

Murphy and Reiner, 2002a).  In this study, the proliferative response to ConA was 

significantly increased for those foals exposed to barn air and this paralleled the increase 

in IFN- expression and demethylation in the proximal promoter region.  Together these 

results are consistent with the hypothesis that environmental exposure increased 

lymphoproliferation leading to DNA demethylation in the IFN- promoter region.   

To conclude, DNA methylation in the proximal promoter region of Ifng regulates 

IFN- gene expression in horses and the hypermethylation in this region contributes to 

the reduced IFN- expression in neonatal foals.  The age-associated demethylation of the 

Ifng promoter loci is likely due to environmental microbial exposure via the induction of 

lymphoproliferation leading to increased gene transcription.  Future studies on how 

demethylation was induced via lymphoproliferation could identify novel targets for new 

adjuvants or immunostimulators. 
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CHAPTER FIVE 

 

The effect of environment on interferon-gamma production in neonatal foals 

Vet Immunol Immunopathol. 2011 Sep 15;143(1-2):170-5.  

Reprinted with permission 

 

SUMMARY 

While interferon-gamma (IFN-γ) plays an important role in protection against 

viral and intracellular bacterial infections, its production in neonates is deficient.  

Exposure to environmental antigens can promote the maturation of the immune system of 

neonatal humans and mice.  We hypothesize that exposure to high level of microbial 

components would increase the production of IFN-γ in neonatal foals.  To test this 

hypothesis, one group of foals was placed into stalls three times a week for 8 weeks.  A 

second group of foals remained on pasture.  Air samples were collected from the barn and 

pasture for microbial culture.  There were more bacteria and fungi in the air samples 

collected from the barn compared with those from the pasture.  Bronchoalveolar lavage 

(BAL) cells and peripheral blood mononuclear cells (PBMC) were collected from both 

groups of foals at various times to assess IFN- production.  The frequency of IFN-
+
 

lymphocytes in BAL cells and PBMC was higher for foals kept in the stalls. 

 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=The%20effect%20of%20environment%20on%20interferon-gamma%20production%20in%20neonatal%20foal
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INTRODUCTION 

 Interferon-gamma (IFN- plays an important role in innate and adaptive immune 

responses (Rowell and Wilson, 2009).  However, in neonatal foals (Boyd et al., 2003; 

Breathnach et al., 2006b), like neonatal humans and mice (Lewis et al., 1986b; Lewis et 

al., 1991), IFN- production is deficient.   In human neonates, IFN--deficiency is 

associated with an increased risk for developing recurrent wheezing (Guerra et al., 2004) 

and atopic dermatitis (Herberth et al.).  In foals, this deficiency in IFN- production likely 

contributes to their susceptibility to infections with Rhodococcus equi and other 

pathogens (Marodi, 2006a).  

Exposure to environmental microbial antigens has been shown to promote IFN- 

production in neonatal humans (Gereda et al., 2000a; Roponen et al., 2005a).  The 

underlying theory that environmental exposures to microbial antigens affects the 

development of the immune system,  referred to as the hygiene hypothesis, was first 

introduced about two decades ago (Strachan, 1989).  This hypothesis postulated that 

exposure to environmental microbial components promotes a Th1 immune response, 

which reduces the risk of allergic disease caused by the Th2 cells (Strachan, 1989).  This 

theory has been widely supported by epidemiological studies and laboratory research 

(Belderbos et al., 2009a; Garn and Renz, 2007).  However, little is known about the 

underlying mechanism involved in this process.  Even less is known about the effect of 

environmental microbial exposure on immune development in neonatal foals.  Here, we 

compared IFN- expression by both peripheral blood mononuclear cells (PBMC) and 

http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=52&SID=3DgpK9oejbLnaogNBAD&page=1&doc=1
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bronchoalveolar lavage (BAL) cells from neonatal pony foals kept in environments with 

different levels of microbial antigen exposure. 

MATERIAL and METHODS 

Animals 

Air samples were collected from both the barn and the pasture at the beginning 

and end of the study period.  At each time, air samples from 4 individual stalls and 4 

spots randomly chosen on the pasture were collected using a MAS-100 eco (MBV AG, 

CH-8712, Stäfa) air sampler set at a sampling rate of 100 liters/min.  For each pasture 

(500 liters of air) and barn (100 liters of air) sampling, four samples were collected onto 

different petri dishes.  Selective media were used for bacteriologic cultures to identify 

total (Trypticase soy agar, TSA), gram
+
 (Columbia CNA Agar with 5% horse blood, C-

CNA), and gram
-
 (MacConkey agar, MAC) bacteria.  The petri dishes for bacteriologic 

culture were incubated at 37ºC overnight.  Fungi were cultured on sabouraud agar (SAB) 

at room temperature for 2 days. The number of colonies on the petri dishes was counted 

and CFU per m
3
 of air calculated.  Fungal identification was performed by Aerobiology 

Laboratory Associates, Inc. (Atlanta, GA). 

Air sampling 

Air samples were collected from both the barn and the pasture at the beginning 

and end of the study period.  At each time, air samples from 4 individual stalls and 4 

spots randomly chosen on the pasture were collected using a MAS-100 eco (MBV AG, 

CH-8712, Stäfa) air sampler set at a sampling rate of 100 liters/min.  For each pasture 

(500 liters of air) and barn (100 liters of air) sampling, four samples were collected onto 
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different petri dishes.  Selective media were used for bacteriologic cultures to identify 

total (Trypticase soy agar, TSA), gram
+
 (Columbia CNA Agar with 5% horse blood, C-

CNA), and gram
-
 (MacConkey agar, MAC) bacteria.  The petri dishes for bacteriologic 

culture were incubated at 37ºC overnight.  Fungi were cultured on sabouraud agar (SAB) 

at room temperature for 2 days. The number of colonies on the petri dishes was counted 

and CFU per m
3
 of air calculated.  Fungal identification was performed by Aerobiology 

Laboratory Associates, Inc. (Atlanta, GA). 

Isolation and stimulation of PBMC  

Heparinized blood was collected from each pony by aseptic jugular venipuncture.  

The PBMC were isolated and cultured in cRPMI, as previously described (Breathnach et 

al., 2006b), 3×10
6
 PBMC from each foal were placed into duplicate wells of a 24-well 

plate in 1ml of medium alone, or in 1 ml of medium containing phorbol 12-myristate 13-

acetate (PMA; 25 ng/ml; Sigma) and ionomycin (1 mM; Sigma).  Brefeldin A (BFA, 10 

mg/ml) was also added to both cultures at the onset to block the export of synthesized 

proteins.  Plates were incubated for a total of 4 h at 37 ºC in 5% CO2 atmosphere. 

Isolation and stimulation of BAL cells 

The BAL fluid was collected as previously described (Breathnach et al., 2006b).  

Approximately 150 mls of BAL fluid was collected from each foal.  The BAL fluid was 

centrifuged at 400g for 10 min and washed twice with PBS.  Fresh BAL cells were 

analyzed by flow cytometry (FacsCalibur, Becton Dickinson, San Jose, CA) using 

forward and side scatter parameters. Additionally, 4×10
6
 BAL cells were stimulated for 

IFN- production, as described above for PBMC.  
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Surface staining of PBMC  

Surface staining were performed using anti-CD3 (F6G.3), anti-CD4 (CVS4) and 

anti-CD8 (F18H.2) and anti-CD8 (CVS8) monoclonal antibodies (see supplementary 

e-file), as previously described (Merant et al., 2009a) .  An IgG1 (BD Pharmingen™, 

Sparks, MD) was used as an isotype control.  The secondary antibody was PE conjugated 

Goat F(ab’)2 anti-mouse IgG1 (Southern Biotechnology Associates, Birmingham, AL).   

Intracellular staining of IFN-

The PBMC (0.6×10
6
) and BAL (0.8×10

6 
)
 
cells were stained intracellularly with 

anti- IFN- antibody, as previously described (Breathnach et al., 2006b) using FITC 

conjugated mouse anti-bovine IFN-γ (Serotec, Raleigh, NC) and an isotype control 

antibody (FITC conjugated mouse IgG1, Serotec).  For the PBMC, the frequency of IFN-

 
+
 cells was determined for CD3

+
, CD4

+
, and CD8

+
 lymphocytes.  For the BAL cells, the 

percentage of IFN-
+
 cells were analyzed using forward and side scatter characteristics to 

define the populations. 

Statistical analysis 

All data were analyzed using a commercially available statistics package (Sigma 

Stat version 10.0; Systat, San Jose, CA). Some of the data were log-transformed to meet 

the assumptions of the ANOVA.  Two-way ANOVA was used to test for statistical 

significance.  Differences were considered significant at p < 0.05.   
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RESULTS AND DISCUSSIONS 

There were significantly more culturable bacterial colonies, both gram
+
 and gram

-
, 

collected in the air samples from the barn (Figure 5.1).  There were also more fungi 

collected from the barn samples.  The predominant fungal species identified in the 

pasture samples was Cladosporium sp. (~99%), whereas Penicillium sp. (83%) were 

predominant in the barn with Cladosporium also being present (~17%).  There was no 

difference in the number of colonies detected at the two sampling times at either location. 

A number of studies have reported bacterial components including endotoxin 

(lipopolysachride, LPS) and peptidoglycans, as well as fungal extracellular 

polysaccharides in air samples collected from equine barns (Nardoni et al., 2005; Woods 

et al., 1993).  A more recent study reported that culturable bacterial levels in equine barns 

averaged 3.1 × 10
3
 CFU/m

3
 and ranged from 67 to 1.9 × 10

4
 CFU/ m

3
 (Samadi et al., 

2009).  Culturable bacteria in the air samples from our barn averaged 5.1 ±1.7 × 10
3
 

CFU/m
3
.   Mold concentrations in the previous study ranged from 74 to 2.4 × 10

4
 CFU 

m
3
 (Samadi et al., 2009), whereas we observed 2.7 ± 1.1 × 10

3
 CFU/m

3
.  As such, the 

levels of microbial exposure our foals experienced can be considered typical for equine 

barn environments. 
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Figure 5.1. Culturable microorganism in the air samples from barn and pasture.  Air 

samples were collected from 4 individual stalls and 4 spots on pasture by MAS-100 eco. 

4 types of media were used to culture the microorganism in the air. C-CAN, MAC and 

TSA plates were incubated at 37ºC for overnight and SAB were incubated at room 

temperature for 2 days. The number of colonies was then counted and calculated.  
*
Means 

of colonies/m
3
 differ between air samples from barn and pasture (p<0.02).  

Microbial exposure in the lung can lead to inflammatory responses resulting in 

increased numbers of cells in the airway (Iwamura and Nakayama, 2008).  As there was 

no difference in the total number of cells in the BAL fluid in barn and pasture groups of 

foals (Table 5.1), this indicated that no additional cells were being recruited to the lung.  

This may reflect the fact that the level of exposure to bacterial antigens required to induce 

an inflammatory response needs to exceed a certain threshold.  Such a threshold is known 

to exist for inhaled LPS in humans (Loh et al., 2006) and horses (Simonen-Jokinen et al., 
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2005).  This lack of induced cellular infiltration into the lungs of the foals is also 

supported by the fact that similar numbers of cells in BAL samples from neonatal foals 

have been reported in other studies (Balson et al., 1997a; Flaminio et al., 2000a).  

Table 5.1.  BAL cell recoveries from foals 

 BAL cells/ml (mean ± SEM × 10
3
) 

Week of Age   Barn  Pasture   

2 363 ± 133 223 ± 81 

4 425 ± 29 582 ± 25 

8 344 ± 66 392 ± 50 

12 609 ± 56 415 ± 116 

Note: Bronchoalveolar lavage cells (BAL) were collected from foals at the indicated 

weeks of age.  There was no significant difference in cell recoveries between Barn and 

Pasture foals at any of the sample times. 

 

While there was a significant (p<0.005) increase in the number of Gate 1 cells 

(lymphocytes) and a corresponding decrease in the number of Gate 2 cells (macrophages) 

over time (Figure 5.2 C and D),  there was no difference between the two groups of foals 

in this regard.  The majority of cells in BAL fluid of young foals are macrophages and 

lymphocytes, representing 85 - 90% and 5 - 20% of the BAL population, respectively.  

Similar changes in the proportion of macrophages and lymphocytes over time have been 

reported elsewhere (Giguere and Polkes, 2005b).  However, there was no dramatic 

increase in total cell numbers, as reported in other studies (Balson et al., 1997a; Flaminio 

et al., 2000a).  This could reflect differences in how the foals were maintained during the 

study periods, the methods used, and the frequency of sampling (Sweeney et al., 1992).    
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While exposure to microorganisms in the air of the barn did not induce 

recruitment of more lymphocytes into the lungs of the foals, exposure did increase the 

frequency of IFN- 
+
 lymphocytes amongst BAL cells (Figure 5.2 E and F).  Overall, the 

frequency of IFN-

 cells in the lymphocyte gate was significantly (p=.0486) higher for 

the foals exposed to barn air compared to those left on the pasture.  There was also a 

significant (p=0.045) difference between the two groups of foals at the 12 week sampling.  

In Gate 2, percentage of IFN-
+
 cells was significantly (p=0.001) different between the 

two groups of foals at 2 weeks, as well as there being an overall significant (p=0.0133) 

difference between the treatment groups.  There was no difference in mean fluorescence 

intensity (MFI) at any of the time points or due to treatment (data not shown).  Similarly, 

inhalation of Bacillus licheniformis, a bacterial spore identified in farm dust, induced 

higher IFN- concentrations in BAL fluids from exposed mice (Vogel et al., 2008a).  By 

contrast, IFN- concentrations in BAL fluids of neonatal mice exposed to corn dust alone 

was no different than that of control mice (George et al., 2006a).  The effect of barn air 

on IFN- production likely reflects the multiple and various microbial components it 

contains.  
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Figure 5.2. IFN-production by BAL cells.  BAL fluid was collected from both barn 

(n=10) and pasture (n=10) groups of pony foals at 2, 4, 8 and 12 weeks of age (5 ponies 

per time points for each group).  The cells from the fluid were washed with PBS twice 

and counted. The fresh cells were acquired and analyzed with FACSCalibur.  The cells 

were gated into Gate 1and Gate 2, based on the morphology (A and B representing two 8 
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weeks old foals from barn and from pasture respectively). The frequency of cells in Gate 

1 (C) and Gate 2 (D) was analyzed. The
 
cells were stimulated with or without PMA/iono 

and BFA for 4 hrs followed by IFN- staining and acquired by FACSCalibur.  Percentage 

of IFN-
+
 cells within Gate 1(E) and gate 2 (F) were analyzed.  

*
 Means of percentage 

significantly differ between two groups (p<0.05). 

The effect of environment on IFN- production was also observed in peripheral 

blood.  It was found that the overall percentage of IFN-
+
 lymphocytes in the PBMC was 

significantly (p=0.0029) higher in those foals exposed to barn air (Figure 5.3).  This 

effect lasted after the foals were returned to the pasture at the end of the exposure period 

with p<0.001 at 12 weeks (Figure 5.3), though eventually the pasture group of foals 

caught up to the level of IFN- production as those foals kept in the barn at 16 weeks.  

Similarly, IFN- production by whole blood cells increased more rapidly in infants that 

were exposed to higher environmental concentrations of endotoxin (Gereda et al., 2000a; 

Roponen et al., 2005a).   

While the frequency of IFN-
+
 CD3

-
 cells in the PBMC (Figure 5.3) was 

statistically higher in those foals exposed to barn air (p=0.065), and specifically elevated 

at 6 and 12 weeks-old foals (p=0.014 and p=0.082, respectively), these represented 

relatively few cells overall.  By contrast, the frequency of IFN-
+
  cells in CD3

+
 cells 

significantly (p=0.043) increased over time, with significantly higher frequencies of IFN-



 CD3

+
 cells in those foals exposed to barn air at 6 (p=0.046) and 12 (p=0.044) weeks 

(Figure 5.3). The overall percentage of IFN--producing cells in the CD4
+
 population was 

also significantly (p=0.0104) higher for those foals exposed to the barn air (Figure 5.3).  
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In detail, CD4
+
 IFN- production was increased in the foals exposed to the barn air at 4 

weeks (p=0.063) and significantly (p=0.008) elevated at12 weeks.  A similar increase in 

IFN- - producing CD4
+
 cells was also seen in 9-24 month –old infants with high 

endotoxin exposure (Gereda et al., 2000a).  While there was no difference in IFN- 

production by CD8
+
 cells between the two groups of foals (Figure 5.3), the percentage 

of IFN-
+
 cells in CD8

+
 cells was found significantly (p=0.0102) higher at 16 weeks for 

those foals exposed to barn air (Figure 5.3).   These particular cells (IFN-
+
CD8)  

compromise only a small percentage of the total CD8 (which includes both CD8 and 

CD8 population and likely represent CD8
+
 memory T cells since prolonged 

nonspecific stimulation of these cells induces IFN- production (Noble, 2009).   
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Figure 5.3.  Percentage of IFN-

cells in PBMC.  PBMC were isolated from blood in 

barn () and pasture () groups of ponies (n=6/group).  The cells were stimulated with 

PMA and surface stained with different anti or isotype control antibodies then fixed and 

followed by intracellular staining of IFN-.  Percentage of IFN-

 cells within each 

subtype of lymphocytes was analyzed within each cell types. 
*
 Means of percentage 
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significant differ between two groups of foals (p<0.05). 
#
 Means of percentage differ 

between two groups (0.05<p<0.19). 

The mechanism whereby exposure to barn air promotes an increase in IFN- 

expression is unknown.  One possibility is that environmental effects on gene expression 

occur via epigenetic regulation as infection with viral, bacterial and parasitic agents 

induces DNA demethylation (Vuillermin et al., 2009a).  The Ifng locus is highly 

methylated in neonatal CD4 T cells (White et al., 2002a).  Therefore, increased 

demethylation of Ifng may be the mechanism behind the increased IFN- production 

following exposure to environmental microbial components within the barn.  Other 

factors in epigenetic regulation may also contribute to the mechanism, such as regulation 

of chromatin structure and transcription factors (Vuillermin et al., 2009a).  Future studies 

will need to focus on these possible mechanisms.  

While it was initially reported that neonatal T cells appear to be heavily biased 

toward Th2 responses both in vitro and in vivo (Adkins and Du, 1998; Delespesse et al., 

1998), this more likely reflects an inability to generate a Th1 (IFN-) response due to 

insufficient accessory signaling by antigen presenting cells  (Upham et al., 2002; 

Zaghouani et al., 2009).  Exposure to microbial antigens appears to facilitate dendritic 

cell maturation in neonates leading to improved Th1 signaling (Upham et al., 2002; 

Willems et al., 2009a).  Foals exhibit similar age-related deficiencies in dendritic cell 

function (Flaminio et al., 2007; Merant et al., 2009a).  Whether exposure to 

environmental antigens increases the Th1-promoting function of dendritic cells in foals 

remains to be determined. 
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In conclusion, exposure to microbial components in barn air promoted an increase 

in IFN- production by both BAL cells in the lung and lymphocytes in the circulating 

blood, without the additional recruitment of cells to the lung.  Which specific bacterial 

and/or fungal component contributed to this promotion of IFN- production remains 

unknown.  Likewise, the mechanism responsible for this increased production is also 

unknown, though epigenetic modification of the Ifng locus in these foals seems likely.  

Since antigen presenting cells contribute to the increased expression of IFN- further 

studies on the effect of environment on their function are also needed. 
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CHAPTER SIX 

The effect of environment on lung antigen presenting cells (APC) in foals 

SUMMARY 

While environmental microbial component exposure promotes the maturity 

development of Th1 immunity in foals and infants, the underlying mechanism is 

unknown.  Antigen-presenting cells (APC), macrophages (M) and dendritic cells (DC), 

sample and process antigens from the environment and present then to T cells which  

prime and drive the direction of the immune response toward Th1 or Th2, including in 

the lung.  Therefore, we hypothesize that environmental exposure to aerosol microbes 

promotes the Th1-polarized maturation and activation of alveolar M and DC in foals.   

The environmental effect on the frequency, maturity and activation of the DC and M 

from bronchial alveolar lavage (BAL) was evaluated and compared in foals placed in the 

barn versus those kept on pasture via estimation of the cell surface molecules using flow 

cytometry, and determination of their mRNA expression of representative Th1 and Th2 

genes by RT-PCR.  The barn-air exposure promoted DC localization into the lung and 

elevated the antigen-presenting and co-stimulatory molecule expression on DC and M, 

and their Th1-priming (Delta 4 and iNOS) and Th1 cytokine gene expression were also 

augmented. In conclusion, the barn-air exposure promoted Th1- biased activation of 

alveolar M and DC.  
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INTRODUCTION 

All newborns are challenged by the environment after birth.  While the respiratory 

tract is the second large front-line exposure of the body, the respiratory immunity in foals 

is functionally immature and is mostly developed after birth (Mair et al., 1988b).  This 

contributes to a high rate of mortality in foals due to respiratory disease, especially 

diseases caused by intracellular pathogenic infections such as Rhodococcus equi (R. equi) 

and Equine Herpes Virus (EHV).  Although environmental microbes challenge the health 

of the neonates, they are also believed to promote the maturity of the neonatal immunity 

(Vuillermin et al., 2009b).  In particular, bacterial and fungal exposure elevates 

interferon-gamma (IFN-) expression by lung lymphocytes in foals (Sun et al., 2011).  

This maturity development of Th1 immunity also appears in humans and mice.  These 

findings are consistent with the hygiene hypothesis, which states that exposure to a higher 

load of microbial components during the very early life promotes the Th1-polarized 

immunity, represented by IFN-expression, thereby inhibiting the Th2 immune response.  

However, the underlying mechanisms of this biased immunity maturation are unknown. 

The specific APC, dendritic cells (DC) and a majority of Macrophages (M), 

sample, processe and present antigens to T cells, which then prime and modulate the 

immune response toward either Th1 or Th2 by communication with T cells via surface 

molecules and production of cytokines (Paul, 2003).  The APC are activated upon 

recognization of environmental pathogens through a group of pathogen-associated 

molecular patterns (PAMPs).  The type of PAMPs and the method or type of infection 

determine the presenting molecules of APC and types of priming cytokines.  For instance, 

exogenous antigens are presented by MHC II, endogenous antigens are presented by 
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MHC I, and lipid molecules are presented by CD1 (Paul, 2003).  While the co-

stimulatory molecules (CD86 and CD83) provide co-stimulatory signals that are 

necessary for T cell activation and survival, cytokines direct the differentiation of naïve T 

cells into either Th1 or Th2 T cells (Paul, 2003).  For example, IL-12 and TNF favor the 

priming of Th1, whereas IL-4 drives Th2 T cells (Lee et al., 2006; Murphy and Reiner, 

2002b; Zhu et al.).  However, DC in neonatal foals have low levels of CD86 and CD1b, 

and IL-12 and TNF expression in response to stimulation (Flaminio et al., 2007; Merant 

et al., 2009b), as in humans (Giguere and Polkes, 2005b; Willems et al., 2009b).  

Similarly, low expression of antigen-presenting molecules in M in foals, such as MHC 

II and CD1b, has also been observed (Flaminio et al., 2007; Fogarty and Leadon, 1987).  

The mechanism responsible for the promotion of this age-associated Th1-polarized 

maturity development of DC and M in foals is unknown.  

It was recently found that exposure to various environmental antigens promoted 

the function of APC in mice and rats (Debarry et al., 2007; Peters et al.; Vogel et al., 

2008b).  The in vitro multiple PAMPs stimulation appeared to activate and promote the 

maturity of DCs and M (Flaminio et al., 2007; Merant et al., 2009b). Therefore, we 

hypothesized that the environmental exposure promoted the Th1 poliarized maturation of 

alveolar DC and M.  To test this hypothesis, we determined the effect of barn-air 

exposure versus pasture-air exposure on the frequency of surface molecules on the DCs 

and M in the bronchial alveolar lavage (BAL) from the foals, as well as the 

corresponding Th1- and Th2- priming gene expression by the cells.  Additionally, we 

estimated the maturity level of DC and M from both groups of foals in terms of their 
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response to stimulation of Th1- and/or Th2-promoting PAMPs.  The environmental effect 

on surface molecules and phagocytosis of MoDC was used as a reference.  

 

MATERIALS AND METHODS 

Animals 

A total of 20 healthy pony foals was used for this study.  The foals were 

maintained on the University of Kentucky’s Department of Veterinary Science’s farm in 

Versailles, Kentucky.  Ten of the foals were chosen randomly at birth to spend 4 hours a 

day for 3 days (MWF) of each week in individual stalls with their mares. The stalls were 

not cleaned during the study period. This barn exposure started when the foals were less 

than 1 week old and stopped after they reached 2 months of age.  When not in the barn, 

the foals were kept on pasture with ten other foals and their mares.  Throughout the study 

period, the ponies had ad libitum access to water and forage in accordance with the Guide 

for the Care and Use of Agricultural Animals in Agricultural Research.  All research 

procedures were approved by the University of Kentucky’s Institutional Animal Care and 

Use Committee. 

Isolation and stimulation of BAL cells 

The BAL fluid was collected as previously described (Breathnach et al., 2006b).  

Approximately 150 mls of BAL fluid was collected from each foal.  The BAL fluid was 

centrifuged at 400 g for 10 min and washed with PBS twice.  4×10
6
 BAL cells were 

stimulated with various type of  PAMPs for 24 hours: lipopolysaccharides (LPS, 2 g/ml, 

Sigma, St Louis, MO, L2630) for TLR4, peptidoglycan (PGN, 20 g/ml, InvivoGen, San 
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Diego, CA, tlrl-pgnsa) for TLR2, Poly (I:C) (25g/ml, Sigma) for TLR3, Pam3CSK4 

(PAM, 50 ng/ml, IMGENEX, San Diego, CA, IMG-2201) for TLR1/TLR2,  or R848 

(2g/ml, InvivoGen, tlrl-r848-5) for TLR7/TLR8 activation.   

Surface staining of BAL cells 

The fresh and stimulated BAL cells, 0.5×10
6
, were surface stained with single or 

double antibodies using mouse anti-CD14 (Big 10, biometec, Greifswald, Germany), 

mouse PE anti-bovine CD1w2 (CC20, Serotec, Raleigh, NC), mouse anti-bovine CD1w2 

(Serotec), mouse PE anti-CD206 (3.29B1.10, Beckman coulter, Brea, CA), mouse PE 

anti-CD83 (B15a, Beckman coulter, Brea, CA), mouse PE/Cy5 anti-CD86 (IT2.2, 

BioLegend, San Diego, CA), mouse PE anti-CD86 (BioLegend) or mouse anti-MHC II 

(CVS10), as previously described (Merant et al., 2009b).  The mouse IgG1 (BD 

Pharmingen™, Sparks, MD), mouse PE IgG2a (Serotec), mouse PE IgG2b (Beckman 

coulter), mouse IgG2a (Serotec) and mouse PE/Cy5 (Biolegend) were used as isotype 

controls.  The secondary antibody PE/Cy5 conjugated Goat anti-mouse IgG1 (Invitrogen, 

Camarillo, CA), PE/Cy5 Goat F(ab’)2 anti-mouse IgG (H+L) (Southern Biotechnology 

Associates, Birmingham, AL) were used when primary antibody was not fluorescent 

labeled.  The cells were fixed with 2% paraformaldehyde and acquired by FACSCalibur 

(BD, Franklin Lakes, NJ) the second day. The  data was analyzed as shown in Figure 6.1 

based on a method referenced in Van Haarst et al. (van Haarst et al., 1994).    
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Figure 6.1. Identification of lung DC and M from BAL. The BAL cells were isolated 

and surface stained for CD4 molecules.  Large granulocytes, identified high SSC and 

FSC, with high autofluorescent (HAF) at FL1 was identified as macrophages, and M 

was analyzed based on PE/Cy5 staining of CD1w2 and CD14, and PE staining of CD206. 

The large granulocytes with low autofluorescent (LAF) and MHC II
high

 were identified as 

DCs, and the DCs were analyzed by CD1w2, CD83 and CD86 staining.  

RT-PCR 

Total cellular RNA was isolated from 2×10
6
 fresh or stimulated BAL cells 

preserved in RNA-STAT 60 (Tel-Test) through manual protocol.  Reverse transcription 

was performed as described previously (Breathnach et al., 2006a).  The resultant cDNA 
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was diluted 1:1 with RNAse-free water. Cytokine gene expression was measured by an 

Applied Biosystems 7900HP Sequence Detection System (Applied Biosystems, Foster 

City, CA). Intron-spanning equine specific primer/probe sets were designed (Assays-by-

Design, Applied Biosystems) for the following genes: Delta 4, Jagged 1, arginase, TLSP, 

iNOS, CD14, MCP-1, and GM-CSF. The sequences are shown in Table 6.1.  The 

selected primers and probes failed to amplify genomic DNA and reverse transcription-

negative RNA samples and their efficiencies were greater than 95% as tested by 

LinRegPCR (Ramakers et al., 2003).  PCR reactions were performed in duplicate wells 

per sample (Breathnach et al., 2006a).  The amplification efficiencies were tested by 

LinRegPCR and the reactions with efficiencies lower than 90 % were omitted.  B2M and 

b-Gus were used as reference genes as determined by the geNorm reference gene 

application (Vandesompele et al., 2002).  Changes in cytokine gene expression were 

calculated as relative expression ratio (rER) based on the method used in Bustin (Bustin 

et al., 2009). 

Table 6.1. Primers and probes sequence 

Target gene                        Sequence or reference Reference 

IL-12 Fwd 

Rev 

Probe 

CTACACCAGCGGCTTCTTCAT 

GCTTCAGCTGCAGGTTCTTG 

CAGGGACATCATCAAACC 

 

IL-6 Fwd 

Rev 

Probe 

GGATGCTTCCAATCTGGGTTCAAT 

CCGAAAGACCAGTGGTGATTTT 

ATCAGGCAGGTCTCCTG 

(Merant et 

al., 2009b) 

IL-10 Fwd 

Rev 

Probe 

AGGACCAGCTGGACAACATG  

GGTAAAACTGGATCATCTCCGACAACC

AGGTAACCCTTAAAGTC 

(Merant et 

al., 2009b) 
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Table 6.1 (continued)  

CD3 Fwd 

Rev 

Probe 

TCTGCTGTTTCCCTCCCATCT 

ATGACGGCATCGCGGATA 

CGGGTCCCGGGCTCGTCTC 

 

TNF Fwd 

Rev 

Probe 

TTACCGAATGCCTTCCAGTCAAT 

GGGCTACAGGCTTGTCACTT 

CCAGACACTCAGATCAT 

(Quinlivan 

et al., 

2007) 

CD11a Fwd 

Rev 

Probe 

GGCTGAGGGTCAAGTGATCATG 

GAGAAGGACAGCAGAGTGATGAC 

CTGAGCTCGCGGCCTG 

 

MCP-1 

 

Fwd 

Rev 

Probe 

GCGGCCGCCTTCAG 

CAGCAGGTGACTGGAGAATTAATTGCA

GGTGCTGGCTCAGC 

(Merant et 

al., 2009b) 

CD163 Fwd 

Rev 

Probe 

GGCAGTGTCAACACCATGAATG 

CCTCCACCTATAAGTCTCAGTTCCATCC

ATCAGAACATGTCACCC 

 

Delta 4 Fwd 

Rev 

Probe 

GTGGACAGGTGTACCAGCAA 

CGGCACATTCGGGTTGGA 

CTGGCCCCCATTGGCA 

 

Jagged 1 Fwd 

Rev 

Probe 

CTCCCCTTCTGCAAACAATGAAAT 

GGTTTCCATCGTCCCGTATGTC 

TTCAGCAGAAATGGCC 

 

iNOS Fwd 

Rev 

Probe 

GCGTTACTCCACCAACAATGG 

CCAGATCCGGAAGTCATGCTTTC 

ATGGCCGACCTGATGTT 

(Merant et 

al., 2009b) 

Arginase Fwd 

Rev 

Probe 

CAGAAGGTCATGGAACAGACATTTGTC

AAAACTCAGATGGATTGGCCTTTCAAA

ACTCAGATGGATTGGCCTTT 

 

TGF Fwd 

Rev 

Probe 

CCCTGCCCCTACATTTGGA 

TGTACAGGGCCAGGACCTT 

CCTGGACACGCAGTACAG  

(Merant et 

al., 2009b) 
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Table 6.1 (continued)  

IL-1 Fwd 

Rev 

Probe 

CCGACACCAGTGACATGATGA 

ATCCTCCTCAAAGAACAGGTCATTCATT

GCCGCTGCAGTAAG 

(Quinlivan 

et al., 

2007) 

IL-6 Fwd 

Rev 

Probe 

GGATGCTTCCAATCTGGGTTCAAT 

TCCGAAAGACCAGTGGTGATTTT 

ATCAGGCAGGTCTCCTG 

(Quinlivan 

et al., 

2007) 

IL-4 Fwd 

Rev 

Probe 

TGACTGTAGCGGATGCCTTTG 

GCCCTGCAGATTTCCTTTCCAT 

CTGGCCCGAAGAAC 

 

IL-13 Fwd 

Rev 

Probe 

CCTGGAGTCCCTGAGCAA 

CATCTTCCGCGTGTTTTGGAT 

TCTCCACCTGCAGTGCC 

 

TSLP Fwd 

Rev 

Probe 

AATGTCATTTTTCTAGCCCTGAAGGAGC

CGGTCTCCACAGTAGA 

ATGAATGGAATCAAAAGTACCC 

 

IL-2 Fwd 

Rev 

Probe 

CCCAAACTCTCCAAGATTCTCACATCA

GAGGTTTGAGTTCTTCTTCTAGACAATG

CCCAAGAAGGCCAC 

 

IL-18 Fwd 

Rev 

Probe 

CCTGTGTTTGAGGATATGCCTGATTGCT

AGACCTCTAGTGAGGCTATCTTATTGTA

CAGACAACGCACCC 

 

IL-17c Fwd 

Rev 

Probe 

AAGGGCCTCAGATTACCACAAC 

TCGCCTCCCAGATCACAGA 

TTGCGGTGGAGATTC 

 

IL-23p19 Fwd 

Rev 

Probe 

GCTGTGATCCTGAAGGACTCA 

CCCTGGTGGATCCTTTGCA 

CAGGGCTGACTGTTGTC 

 

GM-CSF 

 

Fwd 

Rev 

Probe 

GGCCAGCCACTACAAGCA 

GAAGGTGATCATCTGGGTTGCA 

CACCCTGGAAACTTC 
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Table 6.1 (continued)  

IFN- Fwd 

Rev 

Probe 

AGCAGCACCAGCAAGCT 

TTTGCGCTGGACCTTCAGA 

ATTCAGATTCCGGTAAATGA 

 

Beta-2-

microglobulin 

(B2M) 

Fwd 

Rev 

Probe 

CGGGCTACTCTCCCTGACT 

GTGACGTGAGTAAACCTGAACCTT 

CCGTCCCGCGTGTTC 

 

-

glucuronidase 

(b-Gus) 

Fwd 

Rev 

Probe 

GCTCATCTGGAACTTTGCTGATTTT 

CTGACGAGTGAAGATCCCCTTT 

CTCTCTGCGGTGACTGG 

(Quinlivan 

et al., 

2007) 

 

Preparation and assessment of MoDC  

Heparinized blood was collected from both groups of foals by aseptic jugular 

venipuncture.  Peripheral blood mononuclear cells (PBMC) were isolated as previously 

described (Breathnach et al., 2006b; Merant et al., 2009b).  The cells (7.5 to 15×10
6
 

cells/ml) were resuspended in cRPMI 1640 media (Gibco, Grand Island, NY) 

supplemented with 10% autologous serum, 2 mM glutamine (Sigma), 100 U/ml 

penicillin/streptomycin (Sigma), 55 mM 2-mercaptoethanol (GIBCO), and 0.1% 

amphotericin B (Sigma) in tissue culture grade Petri dishes as described (Merant et al., 

2009b).  The non-adherent cells were removed 4 hrs latter, and recombinant equine IL-4 

(1809EL, R&D Systems, Inc. Minneapolis, MN) and GM-CSF was added at 10% for 4 

days.  The non-adherent MoDC were then purified by centrifugation on Nycoprep 1.068 

(Axis Shield, Greiner BioOne), and their number and viability were determined by an 

automated cell counter (Beckman Coulter).  
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A million MoDC were stimulated with LPS (1g/ml, Sigma) for 24 hrs.  Both the 

fresh and the stimulated MoDC were surface stained with antibodies against: CD86 (PE-

Cy5-labeled IT2.2, Biolegend), CD1w2 (PE-labeled-CC20), CD83, MHC II (CVS10), 

CD206 and the CD14 as described as described previously (Merant et al., 2009b).  The 

endocytosis capacity of MoDC with/without LPS stimulation was measured by DQ
TM

 

Ovalbumin (Molecular Probes, Inc., Eugene, OR) as product protocol.  

Statistical analysis 

  All data were analyzed by a commercially available statistics package (Sigma Stat 

version 10.0; Systat, San Jose, CA).  Some of the data were log-transformed or rank-

transformed to meet the assumptions of the normality or equivalence variation.  Two-way 

ANOVA was used to test statistical significance.  Differences are considered significant 

at p < 0.05.   

 RESULTS 

Environmental effect on M  

Since alveolar macrophages comprise the majority of cells in BAL and function 

as antigen surveillance, the effect of environment on M was estimated from foals.  

There was no difference between the frequencies of M in BAL cells from foals placed in 

the barn compared with that kept on pasture (data not shown).  However, the frequency 

of overall CD86
+
 (p=0.011) and MHC II

+
 (p=0.0087) M was observed to be 

significantly elevated in foals with barn air exposure, especially at 2 weeks of age 

(p<0.001, Figure 6.2).  There was also a trend of elevated proportion of CD1b
+ 

M 

(p=0.061) in BAL cells from foals. The elevation was observed after 4 weeks of barn-air 
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exposure and the higher level maintained until the end of the study, with p=0.077 and 

p=0.074  at 8- and 12- weeks,  respectively (Figure 6.2).  In addition, the frequency of 

CD14
+
 M in BAL from foals was also elevated after 2 weeks of barn-air exposure (p< 

0.001, Figure 6.2).  There was no difference in the frequencies of CD206
+
 and CD83

+
 M 

in BAL cells between two groups although proportion of CD206
+
 M increase in both 

groups over time (data not shown).  
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Figure 6.2. Environment effect on surface molecules of lung M. Cells from BAL fluid 

were isolated and surface stained.  The M were identified and the frequency of the 

CD1b, MHC II and CD86 positive M were analyzed. *Mean of frequency was 

significantly different between the two groups of foals, p<0.05. 

The environment effect on the activation of alveolar M was also estimated by 

determining surface molecules on M with in vitro stimulation of Th1/Th2-, Th1- or 

Th2-promoting PAMPs, LPS, Poly (I:C), or PGN. With Poly (I:C) stimulation, the 

overall percentage of MHC II
 +

 M was significantly (p=0.015) elevated in foals with 

barn-air exposure (Figure 6.3).  No significant difference was found in the frequencies of 

CD14
+
, CD206

+
, CD1w2

+
, CD83

+
 and CD86

+
 M with various PAMPs stimulations, 

between the two groups of foals (data not shown). 

 



 

149 
 

Figure 6.3. Elevated percentage of MHC II
+
 M in Poly (I:C) - stimulated BAL cells 

from foals with barn-air exposure.  The isolated BAL cells were stimulated with Poly 

(I:C), then surface stained for MHC II. 
#
Means of MHC II

+
 percentage were significantly 

different between foals placed in the barn (hatched bar) and foals kept on pasture (open 

bar), p<0.08.  

Environment effect on alveolar DCs and MoDC 

Since DCs prime and direct the immune response, the proportion of DCs and the 

frequencies of the antigen-presenting associated and co-stimulatory molecules were 

estimated.  The percentage of DCs was augmented from foals after two weeks placed in 

the stall compared with foals kept on the pasture (p=0.04, Figure 6.4). Overall, the DC 

frequency in foals increased significantly between birth and age 12 weeks (p <0.01). At 

age 2 weeks, the proportion was significantly higher in the foals with barn-air exposure 

than the foals kept on pasture (p<0.006, Figure 6.4).  However, there was a rapid increase 

in the pasture-exposed group from 2 weeks to 8 weeks (p=0.002), reaching the level of 

the barn-exposed group at age 4 weeks (Figure 6.4).  In addition, the percentage of 

overall CD1b
+
 (p=0.0235) and CD86

+
 (p< 0.001) DCs was significantly higher in foals 

placed in the stall than that of foals kept on pasture, with percentage of CD86
+
 DCs 

significantly higher at 2 weeks (p<0.001) and 8 weeks (p=0.042, Figure 6.4).   
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Figure 6.4. Elevated frequency of DC and frequency of CD1b
+
 and CD86

+
 DC in 

BAL cells from foals placed in the barn. The DCs were identified as described and the 

frequency of DC in large granulocytes with LAF BAL cells was analyzed.  The 

proportion of CD86 and CD1b positive cells of the DC were analyzed.  *Mean of 

frequency was significantly different between two groups (p<0.05). 
#
Mean of proportion 

differs significantly between two groups of foals (p<0.09). 

To further characterize the effect of the environment on DCs, the activation of 

Th1- and Th2- promoting DCs was assessed via evaluation of their surface molecule 

expression in response to LPS, Poly (I:C) and PGN stimulation, since different types of 

PAMPs direct the DC development into either Th1- or Th2- maturation (Lebre et al., 

2005).  Overall, the percentage of CD83
+
 DC was significantly higher in BAL cells from 

the barn-exposed foals in response to LPS (p=0.01) and Poly (I:C) (p<0.001) stimulation 

(Figure 6.5).  No significant difference was found in the frequency of CD14
+
, CD206

+
, 

CD1w2
+
, MHC II

+ 
and CD86

+
 DC with various PAMPs stimulation between the two 

groups of foals (data not shown).    
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Figure 6.5. Elevated frequency of CD83
+
 DCs in PAMP - stimulated BAL cells from 

barn-air exposed. The BAL cells were stimulated with different PAMPs and the CD83 

were stained and analyzed in identified DCs. *Mean of frequency in DCs differ between 

foals placed in the barn (hatched bar) and foals kept on pasture (open bar), p<0.05 
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The effect of environment on MoDC was also estimated as a reference DCs to 

alveolar DC, since there is no report on alveolar DCs in horses. However, no difference 

was observed in either surface molecules or endocytosis of MoDC between the two 

groups of foals at any time point, though CD86
+
 and CD1b

+
 DC increased with foal over 

time in both groups (data not shown).   

Mand DC favor Th1-priming in foals with barn-air exposure  

Since the expression of Delta 4 and Jagged 1 in DC is considered a marker for 

Th1- and Th2- priming respectively (Amsen et al., 2004; Debarry et al., 2007; Maekawa 

et al., 2003),  the mRNA levels of these two genes were used to represent the driving 

force of DCs on priming immune response.  The mRNA level of Delta 4 was observed to 

be significantly elevated and maintained at a high level in BAL cells from the barn-

exposed foals compared with the pasture-exposed group (Figure 6.6), with no difference 

in the mRNA level of Jagged 1.  In addition, the environment effect on Min regarding 

Th1- and Th2- priming was also evaluated by determining mRNA expression of 

representative molecules-iNOS and arginase, respectively. Likewise, the mRNA of iNOS 

was significantly and consistently enhanced in the BAL cells from barn-exposed foals 

compared with pasture-exposed group, and there was no difference between the mRNA 

levels of arginase in the two groups of foals (Figure 6.6).   



 

154 
 

 

Figure 6.6. Mand DC favor Th1-priming in foals with barn-air exposure.  The mRNA 

expression of BAL cells were determined by RT-PCR. *Mean of rER was different 

between two groups of foals, p<0.05.    

Chemokine and cytokine gene expression by BAL cells were altered with barn air 

exposure 

Chemokine and cytokine production is a way by which APC modulate immune 

response.  The barn air exposure promoted chemokine mRNA expression, such as GM-

CSF (p=0.04) and MCP-1 (p=0.073) overall, to enhance the recruitment of monocytes to 



 

155 
 

the lung and their differentiation into APC (Figure 6.7).  Similarly, the Th1 cytokine 

mRNA expression, such as IFN- IL-18, and IL-12, was augmented in BAL cells from 

the barn-exposed foals (p=0.046, Figure 6.8; p=0.0109, Figure 6.8; p=0.073, Figure 6.9; 

p=0.074, Figure 6.9, respectively).  An increase of Th2 cytokines, such as IL-13 

(p=0.002), was also observed, though a trend of lower IL-4 mRNA levels was seen in 

BAL from barn-exposed foals, (Figure 6.8).  Additionally, a Th17-promoting cytokine 

gene expression, IL-17, was also found elevated in the BAL cells from the barn-exposed 

foals (p=0.003), as well as IL-23 (p=0.013, Figure 6.8).  However, no difference was 

observed between the two groups in regards to the cytokine associated with regulatory 

function of T cells (IL-10, TGF- and TLSP) (Data not shown).   

 

Figure 6.7. Elevated chemokine gene mRNA expression by BAL cells from barn-air 

exposed foals.  The mRNA expression of BAL cells were determined by RT-PCR. 
#
Mean 

of rER was different between two groups of foals, p<0.07.   
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Figure 6.8. Elevated Th1, Th2 and Th17 cytokine mRNA expression in foals with barn-

air exposure.  The mRNA expression of BAL cells were determined by RT-PCR. The 

mRNA expression of BAL cells were determined by RT-PCR. *Mean of rER was 

different between two groups of foals, p<0.04.  
#
Mean of rER was different between two 

groups of foals, p<0.07.   
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Figure 6.9. Elevated IL-12 mRNA expression in foals with barn-air exposure.  The 

mRNA expression of BAL cells were determined by RT-PCR. The mRNA expression of 

BAL cells were determined by RT-PCR. 
#
Mean of rER was different between two groups 

of foals, p=0.074.   

Effect of barn-air exposure on inflammation 

Inflammation response has been reported to be associated with exposure to 

microbial components.  Therefore, we estimated the influence of the barn air exposure on 

the induction of inflammation by observing patterns of cells recruited to the lung and 

patterns of cytokines expressed by the BAL cells.  Cell types were characterized by 

testing the mRNA level of cellular markers.  No difference was observed between the 

gene expression of CD11 (a neutrophil marker), CD3(a lymphocyte marker) and 

CD163 (an inflammation-associated Mmarker) between the two groups through the 

study (Data not shown).  Despite a lack of inflammatory cells in the lung, the mRNA 

level of TNF was increased in BAL cells from barn-exposed foal versus pasture-
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exposed group overall (p=0.0339) and specifically at 8 weeks (p=0.035, Figure 6.10).  

However, there was no difference in IL-1 and IL-6 mRNA expression by BAL cells from 

the two groups (data not shown).   

 

Figure 6.10. Elevated inflammatory cytokine mRNA expression. The mRNA expression 

of BAL cells were determined by RT-PCR. The mRNA expression of BAL cells were 

determined by RT-PCR. *Mean of rER was different between two groups of foals, 

p=0.035.   

DISCUSSIONS AND CONCLUSIONS 

Recent studies found that exposure to higher loads of microbial components in 

early life result in the Th1-polarized immunity, such as IFN- expression, in humans 

(Roponen et al., 2005b), which provides the evidence for the hygiene hypothesis.  The 

same elevated IFN- production in foals exposed to higher level of aerosol bacteria and 

fungi has also been observed (Sun et al., 2011). However, the underlying mechanisms for 
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this age-associated Th1-biased immunity development are unknown.  APC play a pivotal 

role in sampling antigens from the environments and presenting them to drive the 

immunity to Th1 or Th2 immune response (Paul, 2003).  The in vitro studies showed that 

the direction induced by the activated APC depends on the type of PAMP. For instance, 

LPS activates APC toward Th1 and Th2 priming, the Poly IC activates APC toward Th1-

priming, and PGN activates APC toward Th2-priming immunity. In vivo, the 

environmental PAMP activated DC move to nearest lymphoid tissue where the prime 

occurs (Hume, 2008). With consistent immature DC and M recruitment into the lung 

when exposed to non-pathogenic ubiquitous environmental aerosol microbial components 

exposure, the turn-over rate of lung DC exhibits a steady-state phenomenon (Holt et al., 

1994).  

In this study, an increase of DC localization into the lung in foals after birth with 

environmental exposure was observed.  Similarly, the number of DC in the respiratory 

tract was increased in rats after birth (Holt, 2000; Nelson et al., 1994).  The recruitment 

of DC into the lung was proposed to be the effect of the exposure of environmental 

microbial components (Holt, 2000; Nelson et al., 1994).  A wave of incoming DCs has 

been widely observed recruited in to the lung as a response to LPS, bacterial and viral 

stimulation in adult rats (Holt et al., 1994; McWilliam et al., 1996).  However, the rate of 

recruitment of DC into the lung is defective in neonatal rats in response to microbial 

stimuli (Nelson and Holt, 1995).  The seeding of DC into the lung in neonates may 

likewise be deficient, since the mucosal-associated immune tissue in respiratory tract is 

absent in neonatal foals and the tissue developed after birth correlates with distance to 

ambient air (Mair et al., 1988b).  In addition, the localization of DC was observed 

significantly elevated in foals placed in the barn, which was reported to contain higher 
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levels of culturable bacteria and fungi (Sun et al., 2011).  Thus, the age-associated 

increase of the DC seeding into the lung is likely due to cumulative effect of ubiquitous 

non-pathogenic antigens in the air.  This may be induced by chemokines produced in 

response to microbes in the aerosol since GM-CSF and MCP-1, which promote monocyte 

recruitment and differentiation into DC, were found elevated in the foals with barn-air 

exposure.     

The effect of barn-air exposure was not only on promoting the localization of  

alveolar DCs in the foals but also on stimulating the maturation and/or activation of DC, 

regarding of up-regulation of CD83 and CD1b expression on the DC surface. This may 

be due to the up-regulated GM-CSF and TNF observed elevated in foals placed in the 

barn, since the maturation and activation of the DC in the lung is induced by GM-CSF 

and TNF cooperation (Colsman et al., 2006).  Since no previous studies have been 

performed on alveolar DC in the foals, we resorted to the use of MoDCs.  While a similar 

increase of antigen-presenting associated surface molecules on MoDC, such as CD86 and 

CD1b, was observed in this study as in previous study (Merant et al., 2009b), no 

differences in those molecules were influenced by the effect of environment. Similarly, 

the phenotype and function of lung DC was also observed different from MoDC in mice, 

rats and humans. Thus, it is better to use lung DC instead of MoDC in horses for future 

study on in vivo effect of microbes.  The effect of barn-air exposure on the surface 

molecules of lung M was also observed The promoted CD1b and MHC II expression 

on M with barn-air exposure may increase the resistance of foals to respiratory 

infections, such as R. equi, because the age-limited expression of CD1b and MHC II on 

M was observed in foals, and it was considered to be responsible for foals’ 
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susceptibility to R. equi infection (Flaminio et al., 2007; Pargass et al., 2009).  In addition, 

the elevation of CD14 on M indicates a promotion of the capacity and efficacy of 

antigen surveillance with barn air exposure, since the level of CD14 binding to LPS 

represents the ability of Mto capture antigens. In agreement, children with farm life 

experience were observed to have significantly higher expression of CD14 mRNA in 

blood, which correlated with skewed Th1 immune maturation (Ege et al., 2007).  

 The favored Th1-priming M in foals with barn-air exposure was observed, 

which supports the hygiene hypothesis.  In agreement with elevated iNOS expression in 

foals with barn-air exposure, the augmented iNOS activity in the lung from mice exposed 

to LPS was observed (Stumbles et al., 2003; Tulic et al., 2001).  The biased Th1-priming 

M from foals placed in the barn was further evidenced by the significantly higher 

response of MtoTh1-promoting PAMP (Poly (I:C)) with no difference in response of 

Mto Th2-priming PAMP.  The Th1-biased activation of alveolar DCs was also 

observed in foals with barn-air exposure.  Without stimulation, the immature alveolar DC 

primes for a Th2 immunity (Stumbles et al., 1998; Stumbles et al., 2003), due to the 

suppressive effect from adjacent alveolar M(von Garnier et al., 2005). The 

environmental effects on promoting a Th1 immunity are considered to be conducted by a 

Notch signaling pathway via cross-talk between DC and naïve T cells (Amsen et al., 2004; 

Maekawa et al., 2003).  A high burden of microbial components elevates Delta 4 

expression, which induces and elicits naïve T cells to differentiate into Th1 cells, 

however, a low burden of microbial components maintains the Jagged 1 expression on 

suppressed DC and conducts the differentiation of naïve T cells into Th2 cells (Amsen et 

al., 2004; Debarry et al., 2007; Maekawa et al., 2003).  Given a higher level of microbial 
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components in the air from the barn (Sun et al., 2011), our observation of high Delta 4 

expression in barn-exposed foals correlates with the above theory.  In addition, Th1-

promoting DC were more mature in barn-air exposed foals than those kept on pasture, 

since Poly I:C stimulated alveolar DC elicited  higher expression of CD83, while no PGN 

stimulated Th2-promoting DC (Lebre et al., 2005) were found different between two 

groups of foals.   

The priming preference of lung APC in Th1 response also appeared in the 

elevated Th1 cytokine gene expression in BAL cells from foals placed in the barn.  The 

increased IL-12, IL-18 and TNF mRNA expression in foals with barn-air exposure 

likely contributes to an increased IFN- production which reported in our previous study 

(Sun et al., 2011).  The elevated IL-12 and TNF expression may be due to the 

modulating effect of airway epithelial cells on DC differentiation to the Th1-promoting 

type in response to ubiquitous non-pathogenic antigen in the air via GM-CSF production 

(Rate et al., 2009) which was observed elevated in foals placed in the barn.  Consistent 

with the augmented Th1 cytokines, a Th2 cytokines, IL-13, was also found elevated in 

foals with barn-air exposure, though the pivotal Th2 cytokine (IL-4) expression was not.  

The augment of both Th1 and Th2 cytokine expression may due to relatively unchanged 

IL-10 and TGF- expression.  Similarly, in vitro IL-10 expression was observed 

unchanged in microbial exposed animals (George et al., 2006b; Peters et al.; Vogel et al., 

2008b), though its production increased in response to various aerosol or cowshed 

microbial stimuli in vitro and lung explants ex vivo (Peters et al.; Rate et al., 2009; Vogel 

et al., 2008b).  In addition, the function of barn-air exposure elevated IL-17 and IL-23 

cytokines is unknown. They are critical for host defense against bacterial, fungal, and 
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viral infections at mucosal surfaces (Khader et al., 2009), although they are also report to 

be associated with autoimmunity. Given the premise of inflammation on autoimmune 

induction, the barn air exposure was unlikely to induce any autoimmune diseases, since 

no significant inflammation was observed in the foals kept in the barn versus pasture.  

This suggests that it is highly likely that the barn-air exposure enhances the general 

immunity without increasing the potential of autoimmunity.  The observation of no 

inflammation induced by barn-air exposure may due to the effect of increased IL-12 on 

reduction of airway hyperreactivity (Debarry et al., 2007).  The same observation of no 

inflammation was reported in neonatal mice with corn dust exposure represented by  

comparable neutrophils in BAL fluid to control mice (George et al., 2006a).   

Lungs exposed to different or combined microbial components induce various and 

complicated immune responses. Although the polarization property of PAMPs has been 

studied in vitro, the results of single PAMP in vivo in promotion of the APC immunity 

development varies: the effect depends on the type and consistency concentration of the 

microbes (Debarry et al., 2007; Peters et al.; Vogel et al., 2008b).  A combination of 

multiple PAMP or microbes may responsible for the Th1-polarized immunity 

development of DC and APC in the lung. Further investigation into identification and 

evaluation of the microbes in the barn air must be undertaken to further understand its 

effect. 

To conclude, a model is drawn based on the finding. The environmental microbe 

exposure: promotes the DC localization in the lung; enhances antigen-presenting 

associate molecule (CD1b, CD86, MHC II and CD14) expression on DC and M; 

promote Th1-priming activation of DC (Delta 4) and M(iNOS); and augments Th1 
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cytokine (IL-12, TNF and IL-18) and chemokine (GM-CSF, MCP-1) expression 

(Figure 8). This is the first observation that evaluates the effect of barn-air exposure on 

lung APC in foals.  The ambient finding was that barn-air exposure favors the Th1-

priming activation of lung DC and M in foals. Identification and evaluation of the barn 

air microbial components is necessary for understanding the underlying mechanisms and 

ultimate novel immunomodulator development.   

 

Figure 6.11. Graphic summarization of the effect of environment on APC in the lung. 

Microbial components in the environment enhance alveolar DCs localization; promote 

antigen-presenting associated and costimulatory molecules expression on DC, such as 

CD1b and CD86; up regulate antigen-presenting associated and costimulatory molecules 

expression on M such as MHC II, CD1b and CD14; activate the Th1-priming by both 
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DC and Mf represented by elevated Delta and iNOS expression in them respectively; and 

augment Th1 cytokine expression, such as TNF, IL-12 and IL-18.  
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CHAPTER SEVEN 

Conclusions & Future Directions 

 While IFN-plays an important role in the protection against intracellular 

bacterial and viral infection, such as R. equi, its expression is reduced in foals. However, 

the underlying mechanism for this decreased IFN- expression remains unknown. 

Understanding the regulatory mechanisms of IFN- expression and the environmental 

effect on its expression is necessary for our ultimate goal of promoting foals’ protection 

against various infections via modulation of IFN- expression in foals. The body of the 

research contained in this dissertation provides novel information characterizing the 

relevance of IFN- expression to R. equi infection, and the mechanisms that control the 

impaired IFN- expression in neonatal foals and the environmental effect on this 

expression.  

IFN- production correlates with age-related susceptibility to R. equi infection in 

foals 

The results of the R. equi infection study in chapter two found that the age-related 

susceptibility to R. equi infection in foals was correlated with the IFN- expression prior 

to the challenge infection. Characterizing this relevance provides potential indicators 

(IFN- for foals’ susceptibility risk to R. equi infection.  Perhaps, the levels of IFN-

could be used as a diagnostic tool for the prevention of R. equi infection in individual 

foals. Future examination of this age-related susceptibility in younger foals, less than 3 

weeks old, is important because these neonatal foals are exposed to R. equi immediately 
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after birth and have an even lesser mature immune system when compared to foals of 3 

weeks of age and older.  

Lymphoproliferative activity and DNA methylation regulate IFN-expression in 

foals 

 IFN- expression is found to be promoted by lymphoproliferation and repressed 

by DNA methylation in neonatal foals. The age-related increase of IFN- expression is 

associated with an increase in lymphoproliferative activity and correlated with DNA 

demethylation. Understanding the regulation mechanisms for IFN- expression provides 

the fundamental theory for us to find potential means to enhance IFN- expression. 

Additional mechanisms by which the IFN- gene is transcriptionally regulated in foals 

would be interesting to discover, such as chromatin remodeling and histone modification. 

These mechanisms have been reported to synergistically work together with DNA 

methylation on regulation of IFN- gene transcription.     

Effect of environment on IFN-expression in foals 

This study found, for the first time, that exposure to a high load of microbial 

components in the air promotes the increase of IFN- production by lymphocytes. This is 

likely due to the age-associated demethylation of the Ifng promoter region via the 

induction of lymphoproliferation, leading to increased gene transcription. These novel 

findings suggest a way of modulating IFN- production, hence preventing pathogen 

infection. Investigations of which specific bacterial and/or fungal components in the air 

contribute to this augment of IFN- production would shed light on the development of 

novel adjuvants and immunostimulators. It would also be of interest to understand how 

demethylation is induced by lymphoproliferation in foals.  
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The effect of environment on maturation of APC in foals 

The results of the environment effect on APC provide us with an understanding of 

how the IFN- production is increased with barn-air exposure.  We found that the barn-air 

exposure promotes the maturation and Th1-polarization of the lung DC and M in foals. 

Identification and evaluation of the barn air microbial components is necessary for 

understanding the underlying mechanisms of this process. Understanding how this 

promotion of APC maturation is induced requires further investigations, which ultimately 

will provide ways to promote the immunity maturation of foals, hence enhancing their 

protection against various infections. 

 Overall, this body of work provides novel information characterizing the 

regulation mechanisms of IFN- expression in foals. These findings pave the way for 

future investigations of novel immunomodulators and adjuvants for vaccine development, 

and will allow strategies for promoting the maturation of the immune response, in 

particular, IFN- expression, thereby protecting foals from infection. 
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