28 research outputs found

    Review of Inflammatory Bowel Disease in China

    Get PDF
    Inflammatory bowel disease mainly consisting of ulcerative colitis and Crohn’s disease has been rising gradually during the last two decades in China. In this review article, we provide the latest epidemiological trends in incidence, prevalence, and mortality of IBD patients in China and summarize the risk factors and genetic susceptibility of Chinese IBD patients. We also compare these characteristics to those of IBD patients in Western countries

    Vitamin D Deficiency Is Associated with Endoscopic Severity in Patients with Crohn’s Disease

    Get PDF
    Background and Aims. Vitamin D deficiency is common in patients with Crohn’s disease and is associated with disease activity. Relationship between vitamin D and endoscopic disease activity is unknown. The aim of the study is to determine the association between vitamin D status and endoscopic disease activity in CD patients. Methods. Consecutive hospitalized CD patients from 2014 to 2016 who received vitamin D assessment and colonoscopy were retrospectively evaluated. Clinical disease activity was assessed by Crohn’s disease activity index and C-reactive protein. Endoscopic activity was calculated using simple endoscopic score for Crohn’s disease. Results. Median serum 25OHD level of 131 patients was lower than healthy controls [21.1 nmol/L (11.8–32.3) versus 49.9 nmol/L (44.9–57.4), P=0.007]. 125 (95%) patients had vitamin D deficiency and the rest (5%) had vitamin D insufficiency. Serum 25OHD was inversely correlated with CRP (r=−0.308, P<0.001), CDAI (r=−0.582, P<0.001), SES-CD (r=−0.294, P=0.001), and endoscopic severity stratified by SES-CD (P=0.001). Conclusion. Vitamin D deficiency was prevalent among hospitalized CD patients. Vitamin D levels were inversely correlated with endoscopic disease activity. Vitamin D status could be a biomarker in assessing disease activity among hospitalized CD patients in addition to CDAI and CRP

    THz backward-wave oscillators for plasma diagnostic in nuclear fusion

    Get PDF
    Understanding of the anomalous transport attributed to short-scale length microturbulence through collective scattering diagnostics is key to the development of nuclear fusion energy. Signals in the subterahertz (THz) range (0.1–0.8 THz) with adequate power are required to map wider wavenumber regions. The progress of a joint international effort devoted to the design and realization of novel backward-wave oscillators at 0.346 THz and above with output power in the 1 W range is reported herein. The novel sources possess desirable characteristics to replace the bulky, high maintenance, optically pumped far-infrared lasers so far utilized in this plasma collective scattering diagnostic. The formidable fabrication challenges are described. The future availability of the THz source here reported will have a significant impact in the field of THz applications both for scientific and industrial applications, to provide the output power at THz so far not available

    A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma

    Get PDF
    Molecular profiling of lung cancer has become essential for prediction of an individual’s response to targeted therapies. Next-generation sequencing (NGS) is a promising technique for routine diagnostics, but has not been sufficiently evaluated in terms of feasibility, reliability, cost and capacity with routine diagnostic formalin-fixed, paraffin-embedded (FFPE) materials. Here, we report the validation and application of a test based on Ion Proton technology for the rapid characterisation of single nucleotide variations (SNVs), short insertions and deletions (InDels), copy number variations (CNVs), and gene rearrangements in 145 genes with FFPE clinical specimens. The validation study, using 61 previously profiled clinical tumour samples, showed a concordance rate of 100% between results obtained by NGS and conventional test platforms. Analysis of tumour cell lines indicated reliable mutation detection in samples with 5% tumour content. Furthermore, application of the panel to 58 clinical cases, identified at least one actionable mutation in 43 cases, 1.4 times the number of actionable alterations detected by current diagnostic tests. We demonstrated that targeted NGS is a cost-effective and rapid platform to detect multiple mutations simultaneously in various genes with high reproducibility and sensitivity

    Magnetic fusion energy plasma diagnostic needs novel THz BWOs

    Get PDF
    The development of collective scattering diagnostics is essential for understanding of the anomalous transport attributed to short scale length microturbulence which poses a threat to the development of nuclear fusion reactors. Signals in the sub-THz range (0.1 – 0.8 THz) with adequate power are required to probe the plasma. A joint international effort is therefore devoted to the design and realization of novel backward wave oscillators at 0.346 THz and above with output power in the 1 Watt range to replace the bulky, high maintenance optically pumped FIR lasers so far utilized for this plasma diagnostic

    Single Nucleotide Polymorphisms of <i>ALDH18A1</i> and <i>MAT2A</i> Genes and Their Genetic Associations with Milk Production Traits of Chinese Holstein Cows

    No full text
    Our preliminary work had suggested two genes, aldehyde dehydrogenase 18 family member A1 (ALDH18A1) and methionine adenosyltransferase 2A (MAT2A), related to amino acid synthesis and metabolism as candidates affecting milk traits by analyzing the liver transcriptome and proteome of dairy cows at different lactation stages. In this study, the single nucleotide polymorphisms (SNPs) of ALDH18A1 and MAT2A genes were identified and their genetic effects and underlying causative mechanisms on milk production traits in dairy cattle were analyzed, with the aim of providing effective genetic information for the molecular breeding of dairy cows. By resequencing the entire coding and partial flanking regions of ALDH18A1 and MAT2A, we found eight SNPs located in ALDH18A1 and two in MAT2A. Single-SNP association analysis showed that most of the 10 SNPs of these two genes were significantly associated with the milk yield traits, 305-day milk yield, fat yield, and protein yield in the first and second lactations (corrected p ≤ 0.0488). Using Haploview 4.2, we found that the seven SNPs of ALDH18A1 formed two haplotype blocks; subsequently, the haplotype-based association analysis showed that both haplotypes were significantly associated with 305-day milk yield, fat yield, and protein yield (corrected p ≤ 0.014). Furthermore, by Jaspar and Genomatix software, we found that 26:g.17130318 C>A and 11:g.49472723G>C, respectively, in the 5′ flanking region of ALDH18A1 and MAT2A genes changed the transcription factor binding sites (TFBSs), which might regulate the expression of corresponding genes to affect the phenotypes of milk production traits. Therefore, these two SNPs were considered as potential functional mutations, but they also require further verification. In summary, ALDH18A1 and MAT2A were proved to probably have genetic effects on milk production traits, and their valuable SNPs might be used as candidate genetic markers for dairy cattle’s genomic selection (GS)

    Review of Inflammatory Bowel Disease in China

    No full text
    Inflammatory bowel disease mainly consisting of ulcerative colitis and Crohn&apos;s disease has been rising gradually during the last two decades in China. In this review article, we provide the latest epidemiological trends in incidence, prevalence, and mortality of IBD patients in China and summarize the risk factors and genetic susceptibility of Chinese IBD patients. We also compare these characteristics to those of IBD patients in Western countries

    Inverse Estimation of Soil Hydraulic Parameters in a Landslide Deposit Based on a DE-MC Approach

    No full text
    Extreme rainfall is a common triggering factor of landslide disasters, for infiltration and pore water pressure propagation can reduce suction stress and shear strength at the slip surface. The subsurface hydrological model is an essential component in the early-warning system of rainfall-triggered landslides, whereas soil moisture and pore water pressure simulated by the Darcy&ndash;Richards equation could be significantly affected by uncertainties in soil hydraulic parameters. This study conducted an inverse analysis of in situ measured soil moisture in an earthquake-induced landslide deposit, and the soil hydraulic parameters were optimized with the Differential Evolution Markov chain Monte Carlo method (DE-MC). The DE-MC approach was initially validated with a synthetic numerical experiment to demonstrate its effectiveness in finding the true soil hydraulic parameters. Besides, the soil water characteristic curve (SWCC) and hydraulic conductivity function (HCF) described with optimized soil hydraulic parameter sets had similar shapes despite the fact that soil hydraulic parameters may be different. Such equifinality phenomenon in inversely estimated soil hydraulic parameters, however, did not affect the performance of simulated soil moisture dynamics in the synthetic numerical experiment. The application of DE-MC to a real case study of a landslide deposit also indicated satisfying model performance in terms of accurate match between the in situ measured soil moisture content and ensemble of simulations. In conclusion, based on the satisfying performance of simulated soil moisture and the posterior probability density function (PDF) of parameter sets, the DE-MC approach can significantly reduce uncertainties in specified prior soil hydraulic parameters. This study suggested the integration of the DE-MC approach with the Darcy&ndash;Richards equation for an accurate quantification of unsaturated soil hydrology, which can be an essential modeling strategy to support the early-warning of rainfall-triggered landslides
    corecore