138 research outputs found

    Relaxation behavior of biaxially stretched PLA film during the heat setting stage

    Get PDF
    In this paper, the relaxation behavior of polylactic acid (PLA) film in the heat-setting stage of biaxial stretching was studied. Firstly, the polylactic acid casting films were stretched synchronously in different ratios. We found that the Machine direction (MD) and Transverse direction (TD) stress relaxation curves exhibited a separation trend with the increase in the stretching ratio, and the relaxation amplitude increased gradually. Then, the stress relaxation curves were fitted by the expansion exponential equation (KWW equation). The results showed that the coefficient used to characterize the homogeneity of stress relaxation increased with the increase in the stretching ratio, and the homogeneity in Machine direction was better than that in Transverse direction. Finally, we analyzed the evolution of rheological units and the activation energy spectrum during stress relaxation. We found that the volume of rheological units gradually decreased with the increase in the stretching ratio. The activation energy spectrum exhibited a Gaussian distribution, and the symmetry axis of distribution curves shifted to the high energy. The above results would be of great significance in further understanding the deformation mechanism of polylactic acid film during biaxial stretching and providing theoretical guidance for the preparation of high-performance BOPLA films

    Temporal Features of Psychological and Physical Self-Representation: An ERP Study

    Get PDF
    Psychological and physical-self are two important aspects of self-concept. Although a growing number of behavioral and neuroimaging studies have investigated the cognitive mechanism and neural substrate underlying psychological and physical-self-representation, most of the existing research on psychological and physical-self-representation had been done in isolation. The present study aims to examine the electrophysiological responses to both psychological (one’s own name) and physical (one’s own voice) self-related stimuli in a uniform paradigm. Event-related potentials (ERPs) were recorded for subjects’ own and others’ names uttered by subjects’ own or others’ voice (own voice-own name, own voice-other’s name, other’s voice-own name, other’s voice-other’s name) while subjects performed an auditory passive oddball task. The results showed that one’s own name elicited smaller P2 and larger P3 amplitudes than those of other’s names, irrespective of the voice identity. However, no differences were observed between self and other’s voice during the P2 and P3 stages. Moreover, an obvious interaction effect was observed between voice content and voice identity at the N400 stage that the subject’s own voice elicited a larger parietal N400 amplitude than other’s voice in other name condition but not in own name condition. Taken together, these findings suggested that psychological (one’s own name) and physical (one’s own voice) self-representation induced distinct electrophysiological response patterns in auditory-cognitive processing

    Chronic Myeloid Leukemia Patients Sensitive and Resistant to Imatinib Treatment Show Different Metabolic Responses

    Get PDF
    The BCR-ABL tyrosine kinase inhibitor imatinib is highly effective for chronic myeloid leukemia (CML). However, some patients gradually develop resistance to imatinib, resulting in therapeutic failure. Metabonomic and genomic profiling of patients' responses to drug interventions can provide novel information about the in vivo metabolism of low-molecular-weight compounds and extend our insight into the mechanism of drug resistance. Based on a multi-platform of high-throughput metabonomics, SNP array analysis, karyotype and mutation, the metabolic phenotypes and genomic polymorphisms of CML patients and their diverse responses to imatinib were characterized. The untreated CML patients (UCML) showed different metabolic patterns from those of healthy controls, and the discriminatory metabolites suggested the perturbed metabolism of the urea cycle, tricarboxylic acid cycle, lipid metabolism, and amino acid turnover in UCML. After imatinib treatment, patients sensitive to imatinib (SCML) and patients resistant to imatinib (RCML) had similar metabolic phenotypes to those of healthy controls and UCML, respectively. SCML showed a significant metabolic response to imatinib, with marked restoration of the perturbed metabolism. Most of the metabolites characterizing CML were adjusted to normal levels, including the intermediates of the urea cycle and tricarboxylic acid cycle (TCA). In contrast, neither cytogenetic nor metabonomic analysis indicated any positive response to imatinib in RCML. We report for the first time the associated genetic and metabonomic responses of CML patients to imatinib and show that the perturbed in vivo metabolism of UCML is independent of imatinib treatment in resistant patients. Thus, metabonomics can potentially characterize patients' sensitivity or resistance to drug intervention

    THz backward-wave oscillators for plasma diagnostic in nuclear fusion

    Get PDF
    Understanding of the anomalous transport attributed to short-scale length microturbulence through collective scattering diagnostics is key to the development of nuclear fusion energy. Signals in the subterahertz (THz) range (0.1–0.8 THz) with adequate power are required to map wider wavenumber regions. The progress of a joint international effort devoted to the design and realization of novel backward-wave oscillators at 0.346 THz and above with output power in the 1 W range is reported herein. The novel sources possess desirable characteristics to replace the bulky, high maintenance, optically pumped far-infrared lasers so far utilized in this plasma collective scattering diagnostic. The formidable fabrication challenges are described. The future availability of the THz source here reported will have a significant impact in the field of THz applications both for scientific and industrial applications, to provide the output power at THz so far not available

    Small RNA Profiles of Serum Exosomes Derived From Individuals With Latent and Active Tuberculosis

    Get PDF
    Tuberculosis (TB) has been the leading lethal infectious disease worldwide since 2014, and about one third of the world’s population has a latent TB infection (LTBI). This is largely attributed to the difficulties in diagnosis and treatment of TB and LTBI patients. Exosomes offer a new perspective on investigation of the process of TB infection. In this study, we performed small RNA sequencing to explore small RNA profiles of serum exosomes derived from LTBI and TB patients and healthy controls (HC). Our results revealed distinct miRNA profile of the exosomes in the three groups. We screened 250 differentially expressed miRNAs including 130 specifically expressed miRNAs. Some miRNAs were further validated to be specifically expressed in LTBI (hsa-let-7e-5p, hsa-let-7d-5p, hsa-miR-450a-5p, and hsa-miR-140-5p) and TB samples (hsa-miR-1246, hsa-miR-2110, hsa-miR-370-3P, hsa-miR-28-3p, and hsa-miR-193b-5p). Additionally, we demonstrated four expression panels in LTBI and TB groups, and six expression patterns among the three groups. These specifically expressed miRNAs and differentially expressed miRNAs in different panels and patterns provide potential biomarkers for detection/diagnosis of latent and active TB using exosomal miRNAs. Additionally, we also discovered plenty of small RNAs derived from genomic repetitive sequences, which might play roles in host immune responses along with Mtb infection progresses. Overall, our findings provide important reference and an improved understanding about miRNAs and repetitive region-derived small RNAs in exosomes during the Mtb infectious process, and facilitate the development of potential molecular targets for detection/diagnosis of latent and active tuberculosis

    Single-Shot Object Detection via Feature Enhancement and Channel Attention

    No full text
    Features play a critical role in computer vision tasks. Deep learning methods have resulted in significant breakthroughs in the field of object detection, but it is still an extremely challenging obstacle when an object is very small. In this work, we propose a feature-enhancement- and channel-attention-guided single-shot detector called the FCSSD with four modules to improve object detection performance. Specifically, inspired by the structure of atrous convolution, we built an efficient feature-extraction module (EFM) in order to explore contextual information along the spatial dimension, and then pyramidal aggregation module (PAM) is presented to explore the semantic features of deep layers, thus reducing the semantic gap between multi-scale features. Furthermore, we construct an effective feature pyramid refinement fusion (FPRF) to refine the multi-scale features and create benefits for richer object knowledge. Finally, an attention-guided module (AGM) is developed to balance the channel weights and optimize the final integrated features on each level; this alleviates the aliasing effects of the FPN with negligible computational costs. The FCSSD exploits richer information of shallow layers and higher layers by using our designed modules, thus accomplishing excellent detection performance for multi-scale object detection and reaching a better tradeoff between accuracy and inference time. Experiments on PASCAL VOC and MS COCO datasets were conducted to evaluate the performance, showing that our FCSSD achieves competitive detection performance compared with existing mainstream object detection methods

    Targeted Expression of GFP in the Hair Follicle Using Ex Vivo Viral Transduction

    No full text
    The hair follicle is a highly complex appendage of the skin containing a multiplicity of cell types. The follicle undergoes constant cycling through the life of the organism including growth and resorption with growth dependent on specific stem cells. The targeting of the follicle by genes and stem cells to change its properties, in particular, the nature of the hair shaft is, discussed. Hair follicle delivery systems are described, such as liposomes and viral vectors for gene therapy. The nature of the hair follicle stem cells is discussed, in particular, its pluripotency

    Non-intrusive studies of gas contents and gas diffusion in hen eggs

    No full text
    A detailed study of the condition of eggs was performed using tunable diode lasers to monitor free gas in hen eggs. We detected oxygen and water vapor signals from 13 unfertilized eggs and studied the growth of the egg air cell over a time period of 3 weeks. We also studied the gas exchange through the egg shell, which is of particular interest for fertilized eggs. Four fertilized and five unfertilized eggs were followed over 3 weeks, the hatching period for hen eggs, and significant variations were found both in time and for the two types of eggs. Our results indicate that the techniques could be developed for automatic control of egg freshness, as well as for monitoring the hatching progress of fertilized eggs
    • …
    corecore