5 research outputs found
Self-optimization wavelet-learning method for predicting nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations
In the present work, we propose a self-optimization wavelet-learning method
(SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear
thermal conductivity of highly heterogeneous materials with randomly
hierarchical configurations. The randomly structural heterogeneity,
temperature-dependent nonlinearity and material property uncertainty of
heterogeneous materials are considered within the proposed self-optimization
wavelet-learning framework. Firstly, meso- and micro-structural modeling of
random heterogeneous materials are achieved by the proposed computer
representation method, whose simulated hierarchical configurations have
relatively high volume ratio of material inclusions. Moreover,
temperature-dependent nonlinearity and material property uncertainties of
random heterogeneous materials are modeled by a polynomial nonlinear model and
Weibull probabilistic model, which can closely resemble actual material
properties of heterogeneous materials. Secondly, an innovative stochastic
three-scale homogenized method (STSHM) is developed to compute the macroscopic
nonlinear thermal conductivity of random heterogeneous materials. Background
meshing and filling techniques are devised to extract geometry and material
features of random heterogeneous materials for establishing material databases.
Thirdly, high-dimensional and highly nonlinear material features of material
databases are preprocessed and reduced by wavelet decomposition technique. The
neural networks are further employed to excavate the predictive models from
dimension-reduced low-dimensional data
Higher-order multi-scale deep Ritz method for multi-scale problems of authentic composite materials
The direct deep learning simulation for multi-scale problems remains a
challenging issue. In this work, a novel higher-order multi-scale deep Ritz
method (HOMS-DRM) is developed for thermal transfer equation of authentic
composite materials with highly oscillatory and discontinuous coefficients. In
this novel HOMS-DRM, higher-order multi-scale analysis and modeling are first
employed to overcome limitations of prohibitive computation and Frequency
Principle when direct deep learning simulation. Then, improved deep Ritz method
are designed to high-accuracy and mesh-free simulation for macroscopic
homogenized equation without multi-scale property and microscopic lower-order
and higher-order cell problems with highly discontinuous coefficients.
Moreover, the theoretical convergence of the proposed HOMS-DRM is rigorously
demonstrated under appropriate assumptions. Finally, extensive numerical
experiments are presented to show the computational accuracy of the proposed
HOMS-DRM. This study offers a robust and high-accuracy multi-scale deep
learning framework that enables the effective simulation and analysis of
multi-scale problems of authentic composite materials
Construction of gastric cancer patient-derived organoids and their utilization in a comparative study of clinically used paclitaxel nanoformulations
AbstractBackgroundGastric cancer (GC) is a highly heterogeneous disease with many different histological and molecular subtypes. Due to their reduced systemic adverse effects, nanoformulation agents have attracted increasing attention for use in the treatment of GC patients in the clinic. To improve therapeutic outcomes, it is vitally necessary to provide individual medication references and guidance for use of these nanoformulations, and patient-derived organoids (PDOs) are promising models through which to achieve this goal.ResultsUsing an improved enzymatic digestion process, we succeeded in constructing GC PDOs from surgically resected tumor tissues and endoscopic biopsies from GC patients; these PDOs closely recapitulated the histopathological and genomic features of the corresponding primary tumors. Next, we chose two representative paclitaxel (PTX) nanoformulations for comparative study and found that liposomal PTX outperformed albumin-bound PTX in killing GC PDOs at both the transcriptome and cellular levels. Our results further showed that the different distributions of liposomal PTX and albumin-bound PTX in PDOs played an essential role in the distinct mechanisms through which they kill PDOs. Finally, we constructed patient-derived xenografts model in which we verified the above distinct therapeutic outcomes via an intratumoral administration route.ConclusionsThis study demonstrates that GC PDOs are reliable tools for predicting nanoformulation efficacy.Graphical Abstrac
Construction of gastric cancer patient-derived organoids and their utilization in a comparative study of clinically used paclitaxel nanoformulations
Background: Gastric cancer (GC) is a highly heterogeneous disease with many different histological and molecular subtypes. Due to their reduced systemic adverse effects, nanoformulation agents have attracted increasing attention for use in the treatment of GC patients in the clinic. To improve therapeutic outcomes, it is vitally necessary to provide individual medication references and guidance for use of these nanoformulations, and patient-derived organoids (PDOs) are promising models through which to achieve this goal.
Results: Using an improved enzymatic digestion process, we succeeded in constructing GC PDOs from surgically resected tumor tissues and endoscopic biopsies from GC patients; these PDOs closely recapitulated the histopathological and genomic features of the corresponding primary tumors. Next, we chose two representative paclitaxel (PTX) nanoformulations for comparative study and found that liposomal PTX outperformed albumin-bound PTX in killing GC PDOs at both the transcriptome and cellular levels. Our results further showed that the different distributions of liposomal PTX and albumin-bound PTX in PDOs played an essential role in the distinct mechanisms through which they kill PDOs. Finally, we constructed patient-derived xenografts model in which we verified the above distinct therapeutic outcomes via an intratumoral administration route.
Conclusions: This study demonstrates that GC PDOs are reliable tools for predicting nanoformulation efficacy