10 research outputs found

    Specificity of intracellular termini interactions of G protein-gated inwardly rectifying potassium channels

    No full text
    Ion channels and pumps help in maintaining different ion gradients across this membrane, thereby creating a membrane potential. One class of potassium channels, called inward rectifiers (Kir) are unique due to their ability to allow a greater influx than efflux of K+ ions. The G-protein activated inwardly rectifying potassium channel (GIRK) is the only known Kir channel that is activated by the direct binding of Gβγ. GIRK channels play important physiological roles in neurons, myocytes, pancreatic cells and other cell types, where they restore and maintain the resting membrane potential of the cell and link G protein signaling to changes in potential. Abnormalities in these channels are related to many disease states and knowledge of the mechanism of gating and activation of these channels can be useful in developing possible pharmaceutical therapy for the disease states. Many studies have been conducted to understand the mechanism of interactions between different regions of the channel that translate to function. Our study focuses on the cytoplasmic N- and C-termini of GIRK1/GIRK4 heteromeric channels. Previous studies (Sarac et al., 2005) have demonstrated the importance of specific residues in a hydrophobic pocket formed between interacting intracellular domain within a subunit and between subunits. We have further investigated the nature of the interactions between residues in this pocket. Mutational analyses reveal that intra-termini associations are not disrupted by complementary mutations of I331 and F46 in the C- and N-termini, respectively of GIRK1 subunits. Interactions between termini of alternative subunits are not affected by mutation of the GIRK4 N-terminal residue, Y53 to either its complementary residue or a polar amino acid. Together, these results suggest that maintaining the structural integrity and hydrophobicity of the pocket formed by the N- and C-termini is important for termini interactions and channel function

    Intermittent Hypoxia and Hypercapnia Alter Diurnal Rhythms of Luminal Gut Microbiome and Metabolome.

    No full text
    Obstructive sleep apnea (OSA), characterized by intermittent hypoxia and hypercapnia (IHC), affects the composition of the gut microbiome and metabolome. The gut microbiome has diurnal oscillations that play a crucial role in regulating circadian and overall metabolic homeostasis. Thus, we hypothesized that IHC adversely alters the gut luminal dynamics of key microbial families and metabolites. The objective of this study was to determine the diurnal dynamics of the fecal microbiome and metabolome of Apoe-/- mice after a week of IHC exposure. Individually housed, 10-week-old Apoe-/- mice on an atherogenic diet were split into two groups. One group was exposed to daily IHC conditions for 10 h (Zeitgeber time 2 [ZT2] to ZT12), while the other was maintained in room air. Six days after the initiation of the IHC conditions, fecal samples were collected every 4 h for 24 h (6 time points). We performed 16S rRNA gene amplicon sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) to assess changes in the microbiome and metabolome. IHC induced global changes in the cyclical dynamics of the gut microbiome and metabolome. Ruminococcaceae, Lachnospiraceae, S24-7, and Verrucomicrobiaceae had the greatest shifts in their diurnal oscillations. In the metabolome, bile acids, glycerolipids (phosphocholines and phosphoethanolamines), and acylcarnitines were greatly affected. Multi-omic analysis of these results demonstrated that Ruminococcaceae and tauro-β-muricholic acid (TβMCA) cooccur and are associated with IHC conditions and that Coriobacteriaceae and chenodeoxycholic acid (CDCA) cooccur and are associated with control conditions. IHC significantly change the diurnal dynamics of the fecal microbiome and metabolome, increasing members and metabolites that are proinflammatory and proatherogenic while decreasing protective ones. IMPORTANCE People with obstructive sleep apnea are at a higher risk of high blood pressure, type 2 diabetes, cardiac arrhythmias, stroke, and sudden cardiac death. We wanted to understand whether the gut microbiome changes induced by obstructive sleep apnea could potentially explain some of these medical problems. By collecting stool from a mouse model of this disease at multiple time points during the day, we studied how obstructive sleep apnea changed the day-night patterns of microbes and metabolites of the gut. Since the oscillations of the gut microbiome play a crucial role in regulating metabolism, changes in these oscillations can explain why these patients can develop so many metabolic problems. We found changes in microbial families and metabolites that regulate many metabolic pathways contributing to the increased risk for heart disease seen in patients with obstructive sleep apnea

    Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux.

    No full text
    In vitro and in vivo studies implicate occludin in the regulation of paracellular macromolecular flux at steady state and in response to tumor necrosis factor (TNF). To define the roles of occludin in these processes, we established intestinal epithelia with stable occludin knockdown. Knockdown monolayers had markedly enhanced tight junction permeability to large molecules that could be modeled by size-selective channels with radii of ~62.5 Å. TNF increased paracellular flux of large molecules in occludin-sufficient, but not occludin-deficient, monolayers. Complementation using full-length or C-terminal coiled-coil occludin/ELL domain (OCEL)-deficient enhanced green fluorescent protein (EGFP)-occludin showed that TNF-induced occludin endocytosis and barrier regulation both required the OCEL domain. Either TNF treatment or OCEL deletion accelerated EGFP-occludin fluorescence recovery after photobleaching, but TNF treatment did not affect behavior of EGFP-occludin(ΔOCEL). Further, the free OCEL domain prevented TNF-induced acceleration of occludin fluorescence recovery, occludin endocytosis, and barrier loss. OCEL mutated within a recently proposed ZO-1-binding domain (K433) could not inhibit TNF effects, but OCEL mutated within the ZO-1 SH3-GuK-binding region (K485/K488) remained functional. We conclude that OCEL-mediated occludin interactions are essential for limiting paracellular macromolecular flux. Moreover, our data implicate interactions mediated by the OCEL K433 region as an effector of TNF-induced barrier regulation

    Diet and feeding pattern modulate diurnal dynamics of the ileal microbiome and transcriptome.

    No full text
    Compositional oscillations of the gut microbiome are essential for normal peripheral circadian rhythms, both of which are disrupted in diet-induced obesity (DIO). Although time-restricted feeding (TRF) maintains circadian synchrony and protects against DIO, its impact on the dynamics of the cecal gut microbiome is modest. Thus, other regions of the gut, particularly the ileum, the nexus for incretin and bile acid signaling, may play an important role in entraining peripheral circadian rhythms. We demonstrate the effect of diet and feeding rhythms on the ileal microbiome composition and transcriptome in mice. The dynamic rhythms of ileal microbiome composition and transcriptome are dampened in DIO. TRF partially restores diurnal rhythms of the ileal microbiome and transcriptome, increases GLP-1 release, and alters the ileal bile acid pool and farnesoid X receptor (FXR) signaling, which could explain how TRF exerts its metabolic benefits. Finally, we provide a web resource for exploration of ileal microbiome and transcriptome circadian data

    Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes.

    No full text
    Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent
    corecore