723 research outputs found

    Numerical Study of One-Dimensional Stefan Problem … THERMAL SCIENCE

    Get PDF
    A finite difference approach to a one-dimensional Stefan problem with periodic boundary conditions is studied. The evolution of the moving boundary and the temperature field are simulated numerically, and the effects of the Stefan number and the periodical boundary condition on the temperature distribution and the evolution of the moving boundary are analyzed

    SARS-CoV-2 Causes a Significant Stress Response Mediated by Small RNAs in the Blood of COVID-19 Patients

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3′CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (sncRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities

    MicroRNA Patterns Associated with Clinical Prognostic Parameters and CNS Relapse Prediction in Pediatric Acute Leukemia

    Get PDF
    BACKGROUND: Recent reports have indicated that microRNAs (miRNAs) play a critical role in malignancies, and regulations in the progress of adult leukemia. The role of miRNAs in pediatric leukemia still needs to be established. The purpose of this study was to investigate the aberrantly expressed miRNAs in pediatric acute leukemia and demonstrate miRNA patterns that are pediatric-specific and prognostic parameter-associated. METHODOLOGY/PRINCIPAL FINDINGS: A total of 111 pediatric bone marrow samples, including 99 patients and 12 normal donors, were enrolled in this study. Of those samples, 36 patients and 7 normal samples were used as a test cohort for the evaluation of miRNA profiling; 63 pediatric patients and 5 normal donors were used as a validation cohort to confirm the miRNA differential expression. Pediatric ALL- and AML-specific microRNA expression patterns were identified in this study. The most highly expressed miRNAs in pediatric ALL were miR-34a, miR-128a, miR-128b, and miR-146a, while the highly expressed miRNAs in pediatric AML were miR-100, miR-125b, miR-335, miR-146a, and miR-99a, which are significantly different from those reported for adult CLL and AML. miR-125b and miR-126 may serve as favorable prognosticators for M3 and M2 patients, respectively. Importantly, we identified a "miRNA cascade" associated with central nervous system (CNS) relapse in ALL. Additionally, miRNA patterns associated with prednisone response, specific risk group, and relapse of ALL were also identified. CONCLUSIONS/SIGNIFICANCE: There are existing pediatric-associated and prognostic parameter-associated miRNAs that are independent of cell lineage and could provide therapeutic direction for individual risk-adapted therapy for pediatric leukemia patients

    Research progress on key technologies and equipment for quality preservation and fresh-keeping storage of high quality paddy

    Get PDF
    High quality paddy is rich in nutrition and good taste,but the storage period of high quality paddy is obviously lower than that of common paddy.Under conventional storage conditions,the safe storage period usually did not exceed 1.5 years.Aiming at the problems of yellowing,mildew,caking,quality and taste deterioration under conventional storage conditions,the storage quality characteristics of high quality paddy was studied to explore the effect of environment on yellowing high quality paddy.The detection method for yellowed paddy was established.Thenew control and treatment technology for condensation and caking were developed.Shelf life of high-quality paddy in different storage conditions was defined.The storage process for high-quality paddy in low temperature was integrated into demonstration

    Novel compound heterozygous mutation in the CNGA1 gene underlie autosomal recessive retinitis pigmentosa in a Chinese family

    Get PDF
    Synopsis Retinitis pigmentosa (RP) describes a group of inherited retinopathies that are characterized by the progressive degeneration of photoreceptor neurons, which causes night blindness, a reduction in the peripheral visual field and decreased visual acuity. More than 50 RP-related genes have been identified. In the present study, we analysed a Chinese family with autosomal recessive RP . We identified a compound heterozygous mutation, c.265delC and c.1537G>A, in CNGA1 using targeted next-generation sequencing (NGS) of RP-causing genes. The mutations were validated in the family members by Sanger sequencing. The mutations co-segregated with the RP phenotype and were absent from ethnically-matched control chromosomes. The mutant (mut) CNGA1 p.(G513R) protein caused by the mis-sense novel mutation c.1537G>A was expressed in vitro. The mut CNGA1 p.(G513R) protein was largely retained inside the cell rather than being targeted to the plasma membrane, suggesting the absence of cGMP-gated cation channels in the plasma membrane would be deleterious to rod photoreceptors, leading lead to RP

    An appropriate ammonium: nitrate ratio promotes the growth of centipedegrass: insight from physiological and micromorphological analyses

    Get PDF
    Reasonable nitrogen fertilizer application is an important strategy to maintain optimal growth of grasslands, thereby enabling them to better fulfil their ecological functions while reducing environmental pollution caused by high nitrogen fertilizer production and application. Optimizing the ammonium (NH4+):nitrate (NO3-) ratio is a common approach for growth promotion in crops and vegetables, but research on this topic in grass plants has not received sufficient attention. Centipedegrass, which is widely used in landscaping and ecological protection, was used as the experimental material. Different NH4+:NO3- ratios (0: 100, 25:75, 50:50, 75:25, 100:0) were used as the experimental treatments under hydroponic conditions. By monitoring the physiological and morphological changes under each treatment, the appropriate NH4+:NO3- ratio for growth and its underlying mechanism were determined. As the proportion of ammonium increased, the growth showed a “bell-shaped” response, with the maximum biomass and total carbon and nitrogen accumulation achieved with the NH4+:NO3- ratio of 50:50 treatment. Compared with the situation where nitrate was supplied alone, increasing the ammonium proportion increased the whole plant biomass by 93.2%, 139.7%, 59.0%, and 30.5%, the whole plant nitrogen accumulation by 44.9%, 94.6%, 32.8%, and 54.8%, and the whole plant carbon accumulation by 90.4%, 139.9%, 58.7%, and 26.6% in order. As a gateway for nitrogen input, the roots treated with an NH4+:NO3- ratio of 50:50 exhibited the highest ammonium and nitrate uptake rate, which may be related to the maximum total root length, root surface area, average root diameter, root volume, and largest root xylem vessel. As a gateway for carbon input, leaves treated with an NH4+:NO3- ratio of 50:50 exhibited the highest stomatal aperture, stomatal conductance, photosynthetic rate, transpiration rate, and photosynthetic products. The NH4+:NO3- ratio of 50:50 treatment had the largest stem xylem vessel area. This structure and force caused by transpiration may synergistically facilitate root-to-shoot nutrient translocation. Notably, the change in stomatal opening occurred in the early stage (4 hours) of the NH4+:NO3- ratio treatments, indicating that stomates are structures that are involved in the response to changes in the root NH4+:NO3- ratio. In summary, we recommend 50:50 as the appropriate NH4+:NO3- ratio for the growth of centipedegrass, which not only improves the nitrogen use efficiency but also enhances the carbon sequestration capacity
    corecore