236 research outputs found

    Persistent viral shedding of SARS‐CoV‐2 in faeces – a rapid review

    Get PDF
    Aim In addition to respiratory symptoms, COVID‐19 can present with gastrointestinal complaints suggesting possible faeco‐oral transmission. The primary aim of this review was to establish the incidence and timing of positive faecal samples for SARS‐CoV‐2 in patients with COVID‐19. Methods A systematic literature review identified studies describing COVID‐19 patients tested for faecal virus. Search terms for MEDLINE included ‘clinical’, ‘faeces’, ‘gastrointestinal secretions’, ‘stool’, ‘COVID‐19’, ‘SARS‐CoV‐2’ and ‘2019‐nCoV’. Additional searches were done in the American Journal of Gastroenterology , Gastroenterology , Gut , Lancet Gastroenterology and Hepatology , the World Health Organization Database, the Centre for Evidence‐Based Medicine, New England Journal of Medicine , social media and the National Institute for Health and Care Excellence, bioRxiv and medRxiv preprints. Data were extracted concerning the type of test, number and timing of positive samples, incidence of positive faecal tests after negative nasopharyngeal swabs and evidence of viable faecal virus or faeco‐oral transmission of the virus. Results Twenty‐six relevant articles were identified. Combining study results demonstrated that 53.9% of those tested for faecal RNA were positive. The duration of faecal viral shedding ranged from 1 to 33 days after a negative nasopharyngeal swab with one result remaining positive 47 days after onset of symptoms. There is insufficient evidence to suggest that COVID‐19 is transmitted via faecally shed virus. Conclusion There is a high rate of positive polymerase chain reaction tests with persistence of SARS‐CoV‐2 in faecal samples of patients with COVID‐19. Further research is needed to confirm if this virus is viable and the degree of transmission through the faeco‐oral route. This may have important implications on isolation, recommended precautions and protective equipment for interventional procedures involving the gastrointestinal tract

    Risk factors for severe hand foot mouth disease in Singapore: a case control study

    Full text link
    BACKGROUND: Hand foot mouth disease (HFMD) is a common childhood infection that can potentially lead to serious complications. The aim of this study is to identify risk factors of acquiring severe HFMD in our population. METHODS: We performed a case control study using patients admitted to our hospital from August 2004 to July 2014. Cases were patients with severe HFMD disease while controls were age-matched patients obtained from the same year, in a 2:1 ratio. Data comprising demographic characteristics, clinical symptoms and signs, and lab findings were collected. Conditional univariable logistic regression was performed to determine risk factors for severe disease. RESULTS: A total of 24 cases of severe HFMD were identified and matched with 48 controls. Seventeen (70.8 %) cases had central nervous system complications. Seven (29.2 %) had cardiovascular complications without evidence of myocarditis. One patient died of encephalitis. The overall mortality of severe disease is 4 %. Evidence of hypoperfusion, seizure, altered mentation, meningeal irritation, tachycardia, tachypnea, raised absolute neutrophil count and EV-A71 (Enterovirus A71) positivity were significantly associated with a severe course of HFMD. CONCLUSION: In managing children with HFMD, physicians should consider these factors to help identify patients at risk for severe disease

    Characterization of early host responses in adults with dengue disease

    Get PDF
    BACKGROUND: While dengue-elicited early and transient host responses preceding defervescence could shape the disease outcome and reveal mechanisms of the disease pathogenesis, assessment of these responses are difficult as patients rarely seek healthcare during the first days of benign fever and thus data are lacking. METHODS: In this study, focusing on early recruitment, we performed whole-blood transcriptional profiling on dengue virus PCR positive patients sampled within 72 h of self-reported fever presentation (average 43 h, SD 18.6 h) and compared the signatures with autologous samples drawn at defervescence and convalescence and to control patients with fever of other etiology. RESULTS: In the early dengue fever phase, a strong activation of the innate immune response related genes were seen that was absent at defervescence (4-7 days after fever debut), while at this second sampling genes related to biosynthesis and metabolism dominated. Transcripts relating to the adaptive immune response were over-expressed in the second sampling point with sustained activation at the third sampling. On an individual gene level, significant enrichment of transcripts early in dengue disease were chemokines CCL2 (MCP-1), CCL8 (MCP-2), CXCL10 (IP-10) and CCL3 (MIP-1α), antimicrobial peptide β-defensin 1 (DEFB1), desmosome/intermediate junction component plakoglobin (JUP) and a microRNA which may negatively regulate pro-inflammatory cytokines in dengue infected peripheral blood cells, mIR-147 (NMES1). CONCLUSIONS: These data show that the early response in patients mimics those previously described in vitro, where early assessment of transcriptional responses has been easily obtained. Several of the early transcripts identified may be affected by or mediate the pathogenesis and deserve further assessment at this timepoint in correlation to severe disease

    HPK1 Associates with SKAP-HOM to Negatively Regulate Rap1-Mediated B-Lymphocyte Adhesion

    Get PDF
    BACKGROUND: Hematopoietic progenitor kinase 1 (HPK1) is a Ste20-related serine/threonine kinase activated by a range of environmental stimuli including genotoxic stress, growth factors, inflammatory cytokines and antigen receptor triggering. Being inducibly recruited to membrane-proximal signalling scaffolds to regulate NFAT, AP-1 and NFkappaB-mediated gene transcription in T-cells, the function of HPK1 in B-cells to date remains rather ill-defined. METHODOLOGY/PRINCIPAL FINDINGS: By using two loss of function models, we show that HPK1 displays a novel function in regulating B-cell integrin activity. Wehi 231 lymphoma cells lacking HPK1 after shRNA mediated knockdown exhibit increased basic activation levels of Ras-related protein 1 (Rap1), accompanied by a severe lymphocyte function-associated antigen-1 (LFA-1) dependent homotypic aggregation and increased adhesion to intercellular adhesion molecule 1 (ICAM-1). The observed phenotype of enhanced integrin activity is caused downstream of Src, by a signalling module independent of PI3K and PLC, involving HPK1, SKAP55 homologue (SKAP-HOM) and Rap1-GTP-interacting adaptor molecule (RIAM). This alters actin dynamics and renders focal adhesion kinase (FAK) constitutively phosphorylated. Bone marrow and splenic B-cell development of HPK1(-/-) mice are largely unaffected, except age-related tendencies for increased splenic cellularity and BCR downregulation. In addition, naïve splenic knockout B-cells appear hyperresponsive to a range of stimuli applied ex vivo as recently demonstrated by others for T-cells. CONCLUSIONS/SIGNIFICANCE: We therefore conclude that HPK1 exhibits a dual function in B-cells by negatively regulating integrin activity and controlling cellular activation, which makes it an interesting candidate to study in pathological settings like autoimmunity and cancer

    CCL21/CCR7 Prevents Apoptosis via the ERK Pathway in Human Non-Small Cell Lung Cancer Cells

    Get PDF
    Previously, we confirmed that C-C chemokine receptor 7 (CCR7) promotes cell proliferation via the extracellular signal-regulated kinase (ERK) pathway, but its role in apoptosis of non-small cell lung cancer (NSCLC) cell lines remains unknown. A549 and H460 cells of NSCLC were used to examine the effect of CCL21/CCR7 on apoptosis using flow cytometry. The results showed that activation of CCR7 by its specific ligand, exogenous chemokine ligand 21 (CCL21), was associated with a significant decline in the percent of apoptosis. Western blot and real-time PCR assays indicated that activation of CCR7 significantly caused upregulation of anti-apoptotic bcl-2 and downregulation of pro-apoptotic bax and caspase-3, but not p53, at both protein and mRNA levels. CCR7 small interfering RNA significantly attenuated these effects of exogenous CCL21. Besides, PD98059, a selective inhibitor of MEK that disrupts the activation of downstream ERK, significantly abolished these effects of CCL21/CCR7. Coimmunoprecipitation further confirmed that there was an interaction between p-ERK and bcl-2, bax, or caspase-3, particularly in the presence of CCL21. These results strongly suggest that CCL21/CCR7 prevents apoptosis by upregulating the expression of bcl-2 and by downregulating the expression of bax and caspase-3 potentially via the ERK pathway in A549 and H460 cells of NSCLC

    Melanism in Peromyscus Is Caused by Independent Mutations in Agouti

    Get PDF
    Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural populations, mutations at one gene, the melanocortin-1 receptor (Mc1r), have been implicated in the vast majority of cases, possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in the wild, we investigated the genetic basis of melanism in the rodent genus Peromyscus, in which melanic mice have been reported in several populations. We focused on two genes known to cause melanism in other taxa, Mc1r and its antagonist, the agouti signaling protein (Agouti). While variation in the Mc1r coding region does not correlate with melanism in any population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region and exons 1 and 2 of Agouti, results in a loss of Agouti expression and is perfectly associated with melanic color. In a second population from Alaska, we find that a premature stop codon in exon 3 of Agouti is associated with a similar melanic phenotype. These results show that melanism has evolved independently in these populations through mutations in the same gene, and suggest that melanism produced by mutations in genes other than Mc1r may be more common than previously thought

    Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2–5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis
    corecore