12,579 research outputs found

    Fe-doping induced superconductivity in charge-density-wave system 1T-TaS2

    Full text link
    We report the interplay between charge-density-wave (CDW) and superconductivity of 1TT-Fex_{x}Ta1x_{1-x}S2_{2} (0x0.050\leq x \leq 0.05) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/Mott-gap as shown by the density functional theory (DFT) calculations. The superconducting state develops at low temperatures within the CDW state for the samples with the moderate doping levels. The superconductivity strongly depends on xx within a narrow range, and the maximum superconducting transition temperature is 2.8 K as x=0.02x=0.02. We propose that the induced superconductivity and CDW phases are separated in real space. For high doping level (x>0.04x>0.04), the Anderson localization (AL) state appears, resulting in a large increase of resistivity. We present a complete electronic phase diagram of 1TT-Fex_{x}Ta1x_{1-x}S2_{2} system that shows a dome-like Tc(x)T_{c}(x)

    Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition

    Get PDF
    published_or_final_versio

    Multifractal analysis of complex networks

    Full text link
    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions DqD_{q} of some theoretical networks, namely scale-free networks, small world networks and random networks, and one kind of real networks, namely protein-protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein-protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of DqD_{q} due to changes in the parameters of the theoretical network models is also discussed.Comment: 18 pages, 7 figures, 4 table

    An experimental study of welded bar sleeve wall panel connection under tensile, shear, and flexural loads

    Get PDF
    This paper presents an experimental study of a new grouted splice connection for wall panels, called Welded Bar Sleeve (WBS). The connections were made from steel pipes and tested with incremental tensile, shear and flexural loads until failure. The aim is to determine the behaviour of the connection under the three load cases. For this, the connections are evaluated in terms of the load–displacement responses, ultimate capacities, ductility responses and some feasibility assessment criteria. WBS was found to provide sufficient strength at the bar embedded length of 8, 8 and 11 times the bar diameter under tensile, shear and flexural loads, respectively. It is effective under tension, but could only service up to 1/3 of its ultimate shear capacity. Flexural load is the most critical load case for the connection. For this, further enhancements are required when subjected to shear and flexural loads
    corecore