12,579 research outputs found
Recommended from our members
Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery
A polyisoprene-sulfur (PIPS) copolymer and nano sulfur composite material (90 wt % sulfur) is synthesized through inverse vulcanization of PIP polymer with micrometer-sized sulfur particles for high-areal-capacity lithium sulfur batteries. The polycrystalline structure and nanodomain nature of the copolymer are revealed through high-resolution transmission electron microscopy (HRTEM). PIP polymer is also used as binders for the electrode to further capture the dissovlved polysulfides. A high areal capacity of ca. 7.0 mAh/cm2 and stable cycling are achieved based on the PIPS nanosulfur composite with a PIP binder, crucial to commercialization of lithium sulfur batteries. The chemical confinement both at material and electrode level alleviates the diffusion of polysulfides and the shuttle effect. The sulfur electrodes, both fresh and cycled, are analyzed through scanning electron microscopy (SEM). This approach enables scalable material production and high sulfur utilization at the cell level
Fe-doping induced superconductivity in charge-density-wave system 1T-TaS2
We report the interplay between charge-density-wave (CDW) and
superconductivity of 1-FeTaS ()
single crystals. The CDW order is gradually suppressed by Fe-doping,
accompanied by the disappearance of pseudogap/Mott-gap as shown by the density
functional theory (DFT) calculations. The superconducting state develops at low
temperatures within the CDW state for the samples with the moderate doping
levels. The superconductivity strongly depends on within a narrow range,
and the maximum superconducting transition temperature is 2.8 K as . We
propose that the induced superconductivity and CDW phases are separated in real
space. For high doping level (), the Anderson localization (AL) state
appears, resulting in a large increase of resistivity. We present a complete
electronic phase diagram of 1-FeTaS system that shows a
dome-like
Recommended from our members
Research on the performance of radiative cooling and solar heating coupling module to direct control indoor temperature
The energy crisis and environmental pollution pose great challenges to human development. Traditional vapor-compression cooling consumes abundant energy and leads to a series of environmental problems. Radiative cooling without energy consumption and environmental pollution holds great promise as the next generation cooling technology, applied in buildings mostly in indirect way. In this work, a temperature-regulating module was introduced for direct summer cooling and winter heating. Firstly, the summer experiments were conduct to investigate the radiative cooling performance of the module. And the results indicated that the maximum indoor temperature reached only 27.5 °C with the ambient temperature of 34 °C in low latitude areas and the air conditioning system was on for only about a quarter of the day. Subsequently, the winter experiments were performed to explore the performance of the module in cooling and heating modes. The results indicated that indoor temperature can reach 25 °C in the daytime without additional heat supply and about a quarter of the day didn't require heating in winter. Additionally, the transient model of the module and the building revealed that the electricity saving of 42.4% (963.5 kWh) can be achieved in cooling season with the module, and that was 63.7% (1449.1 kWh) when coupling with energy storage system. Lastly, further discussion about the challenges and feasible solutions for radiative cooling to directly combine with the buildings were provided to advance the application of radiative cooling. Furthermore, with an acceptable payback period of 8 years, the maximum acceptable incremental cost reached 26.2 $/m2. The work opens up a new avenue for the application mode of the daytime radiative cooling technology
Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition
published_or_final_versio
Multifractal analysis of complex networks
Complex networks have recently attracted much attention in diverse areas of
science and technology. Many networks such as the WWW and biological networks
are known to display spatial heterogeneity which can be characterized by their
fractal dimensions. Multifractal analysis is a useful way to systematically
describe the spatial heterogeneity of both theoretical and experimental fractal
patterns. In this paper, we introduce a new box covering algorithm for
multifractal analysis of complex networks. This algorithm is used to calculate
the generalized fractal dimensions of some theoretical networks, namely
scale-free networks, small world networks and random networks, and one kind of
real networks, namely protein-protein interaction networks of different
species. Our numerical results indicate the existence of multifractality in
scale-free networks and protein-protein interaction networks, while the
multifractal behavior is not clear-cut for small world networks and random
networks. The possible variation of due to changes in the parameters of
the theoretical network models is also discussed.Comment: 18 pages, 7 figures, 4 table
An experimental study of welded bar sleeve wall panel connection under tensile, shear, and flexural loads
This paper presents an experimental study of a new grouted splice connection for wall panels, called Welded Bar Sleeve (WBS). The connections were made from steel pipes and tested with incremental tensile, shear and flexural loads until failure. The aim is to determine the behaviour of the connection under the three load cases. For this, the connections are evaluated in terms of the load–displacement responses, ultimate capacities, ductility responses and some feasibility assessment criteria. WBS was found to provide sufficient strength at the bar embedded length of 8, 8 and 11 times the bar diameter under tensile, shear and flexural loads, respectively. It is effective under tension, but could only service up to 1/3 of its ultimate shear capacity. Flexural load is the most critical load case for the connection. For this, further enhancements are required when subjected to shear and flexural loads
- …