7,692 research outputs found

    Reexamination of the role of hematopoietic organs on the hematopoiesis in the silkworm, Bombyx mori

    Get PDF
    Larval hematopoietic organs (HPO) are thought as the only source of circulating hemocytes in most insects. In this paper, we re-checked the importance of hematopoietic organs to hematopoiesis in the silkworm through surgical operation to remove the organs from silkworm larvae at 12 h after 5 th ecdysis. We observed that there was no significant decrease of hemocyte density but higher ratio of cell division in the HPO-removed wandering larvae. We checked and compared the total hemocytes in circulation and in 4 hematopoietic organs of each larva and found that even we suppose all hemocytes could be released from 4 organs at one time, it could not meet the circulating hemocytes increase in vivo due to huge difference. In order to monitor hemocytes movement in the hematopoietic organs to get information on hemocytes releasing in vivo, we labeled the dividing hemocytes with 5-bromo-2’-deoxyuridine (BrdU) at 12 h after 5th ecdysis and observed BrdU-positive cells in the organs for several days. Our results show that the BrdU-labeled hemocytes were not released as quickly as we thought because there were still many BrdU-positive cells in the wandering organs and some cells even had almost no changed BrdU labeling. Therefore, the silkworm larvae have a novel hematopoiesis because circulating hemocyte division might contribute huge part to the hematopoiesis

    Reexamination of the role of hematopoietic organs on the hematopoiesis in the silkworm, Bombyx mori

    Get PDF
    Larval hematopoietic organs (HPO) are thought as the only source of circulating hemocytes in most insects. In this paper, we re-checked the importance of hematopoietic organs to hematopoiesis in the silkworm through surgical operation to remove the organs from silkworm larvae at 12 h after 5 th ecdysis. We observed that there was no significant decrease of hemocyte density but higher ratio of cell division in the HPO-removed wandering larvae. We checked and compared the total hemocytes in circulation and in 4 hematopoietic organs of each larva and found that even we suppose all hemocytes could be released from 4 organs at one time, it could not meet the circulating hemocytes increase in vivo due to huge difference. In order to monitor hemocytes movement in the hematopoietic organs to get information on hemocytes releasing in vivo, we labeled the dividing hemocytes with 5-bromo-2’-deoxyuridine (BrdU) at 12 h after 5th ecdysis and observed BrdU-positive cells in the organs for several days. Our results show that the BrdU-labeled hemocytes were not released as quickly as we thought because there were still many BrdU-positive cells in the wandering organs and some cells even had almost no changed BrdU labeling. Therefore, the silkworm larvae have a novel hematopoiesis because circulating hemocyte division might contribute huge part to the hematopoiesis

    Tracking Target Signal Strengths on a Grid using Sparsity

    Get PDF
    Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation, and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to \emph{linear} state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through ℓ1\ell_1-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths, and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts.Comment: Submitted to IEEE Trans. on Signal Processin

    Inflationary universe in loop quantum cosmology

    Full text link
    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.Comment: 21 pages, 4 figures; accepted for publication in JCA

    Coherent Backscattering of light in a magnetic field

    Full text link
    This paper describes how coherent backscattering is altered by an external magnetic field. In the theory presented, magneto-optical effects occur inside Mie scatterers embedded in a non-magnetic medium. Unlike previous theories based on point-like scatterers, the decrease of coherent backscattering is obtained in leading order of the magnetic field using rigorous Mie theory. This decrease is strongly enhanced in the proximity of resonances, which cause the path length of the wave inside a scatterer to be increased. Also presented is a novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.

    A selected ion flow tube study of the ion-molecule reactions of monochloroethene, trichloroethene and tetrachloroethene

    Get PDF
    Data for the rate coefficients and product cations of the reactions of a large number of atomic and small molecular cations with monochloroethene, trichloroethene and tetrachloroethene in a selected ion flow tube at 298 K are reported. The recombination energy of the ions range from 6.27 eV (H3_3O+^+) through to 21.56 eV (Ne+^+). Collisional rate coefficients are calculated by modified average dipole orientation theory and compared with experimental values. Thermochemistry and mass balance predict the most feasible neutral products. Together with previously reported results for the three isomers of dichloroethene (J. Phys. Chem. A., 2006, 110, 5760), the fragment ion branching ratios have been compared with those from threshold photoelectron photoion coincidence spectroscopy over the photon energy range 9-22 eV to determine the importance or otherwise of long-range charge transfer. For ions with recombination energy in excess of the ionisation energy of the chloroethene, charge transfer is energetically allowed. The similarity of the branching ratios from the two experiments suggest that long-range charge transfer is dominant. For ions with recombination energy less than the ionisation energy, charge transfer is not allowed; chemical reaction can only occur following formation of an ion-molecule complex, where steric effects are more significant. The products that are now formed and their percentage yield is a complex interplay between the number and position of the chlorine atoms with respect to the C=C bond, where inductive and conjugation effects can be important

    A side-by-side comparison of Daya Bay antineutrino detectors

    Get PDF
    The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle θ13\theta_{13} with a sensitivity better than 0.01 in the parameter sin22θ13^22\theta_{13} at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure

    “I h 8 u”: Findings from a five-year study of text and e-mail bullying

    Get PDF
    Copyright @ 2010 British Educational Research Association. The final version of this article is available at the link below.This study charts reports of nasty or threatening text and e-mail messages received by students in academic years 7 and 8 (11-13 years of age) attending 13 secondary schools in the North of England between 2002-2006. Annual surveys were undertaken on behalf of the local education authority (LEA) to monitor bullying. Results indicated that, over five years, the number of pupils receiving one or more nasty or threatening text messages or e-mails increased significantly, particularly among girls. However, receipt of frequent nasty or threatening text and e-mail messages remained relatively stable. For boys, being a victim of direct-physical bullying was associated with receiving nasty or threatening text and e-mail messages; for girls it was being unpopular among peers. Boys received more hate-related messages and girls were primarily the victims of name-calling, Findings are discussed with respect to theoretical and policy developments, and recommendations for future research are offered

    Observation of electron-antineutrino disappearance at Daya Bay

    Full text link
    The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle θ13\theta_{13} with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth_{\rm th} reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43,000 ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940¹0.011(stat)¹0.004(syst)R=0.940\pm 0.011({\rm stat}) \pm 0.004({\rm syst}). A rate-only analysis finds sin⁥22θ13=0.092¹0.016(stat)¹0.005(syst)\sin^22\theta_{13}=0.092\pm 0.016({\rm stat})\pm0.005({\rm syst}) in a three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
    • …
    corecore