2,179 research outputs found
Analysis of Ten Generations of Selection for Residual Feed Intake in Yorkshire Pigs
Ten generations (G) of divergent selection for residual feed intake (RFI) was practiced in Yorkshire pigs. This study shows that feed efficiency based on RFI was moderately heritable and responded to selection. Pigs selected for increased feed efficiency from the low RFI line ate less, grew slightly slower, and were leaner than pigs from the high RFI line. Thus, the results of this study show that selection for decreased RFI can improve feed efficiency and can be included in an economic selection index in addition to growth for reducing feed cost
Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber
spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS
will cover a 1.3 degree diameter field with 2394 fibers to complement the
imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final
positioning accuracy between the fibers and observing targets of PFS is
required to be less than 10um. The metrology camera system (MCS) serves as the
optical encoder of the fiber motors for the configuring of fibers. MCS provides
the fiber positions within a 5um error over the 45 cm focal plane. The
information from MCS will be fed into the fiber positioner control system for
the closed loop control. MCS will be located at the Cassegrain focus of Subaru
telescope in order to to cover the whole focal plane with one 50M pixel Canon
CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform
spot size with a 10 micron FWHM across the field for reasonable sampling of
PSF. Carbon fiber tubes are used to provide a stable structure over the
operating conditions without focus adjustments. The CMOS sensor can be read in
0.8s to reduce the overhead for the fiber configuration. The positions of all
fibers can be obtained within 0.5s after the readout of the frame. This enables
the overall fiber configuration to be less than 2 minutes. MCS will be
installed inside a standard Subaru Cassgrain Box. All components that generate
heat are located inside a glycol cooled cabinet to reduce the possible image
motion due to heat. The optics and camera for MCS have been delivered and
tested. The mechanical parts and supporting structure are ready as of spring
2016. The integration of MCS will start in the summer of 2016.Comment: 11 pages, 15 figures. SPIE proceeding. arXiv admin note: text overlap
with arXiv:1408.287
The molecular gas kinematics in the host galaxy of non-repeating FRB 180924B
Fast radio bursts (FRBs) are millisecond-duration transients with large
dispersion measures. The origin of FRBs is still mysterious. One of the methods
to comprehend FRB origin is to probe the physical environments of FRB host
galaxies. Mapping molecular-gas kinematics in FRB host galaxies is critical
because it results in star formation that is likely connected to the birth of
FRB progenitors. However, most previous works of FRB host galaxies have focused
on its stellar component. Therefore, we, for the first time, report the
molecular gas kinematics in the host galaxy of the non-repeating FRB 180924B at
. Two velocity components of the CO (3-2) emission line are detected
in its host galaxy with the Atacama Large Millimeter/submillimeter Array
(ALMA): the peak of one component ( km s) is near the centre of
the host galaxy, and another ( km s) is near the FRB position.
The CO (3-2) spectrum shows asymmetric profiles with A , where A is the peak flux density ratio between the two
velocity components. The CO (3-2) velocity map also indicates an asymmetric
velocity gradient from km s to 8 km s. These results
indicate a disturbed kinetic structure of molecular gas in the host galaxy.
Such disturbed kinetic structures are reported for repeating FRB host galaxies
using HI emission lines in previous works. Our finding indicates that
non-repeating and repeating FRBs could commonly appear in disturbed kinetic
environments, suggesting a possible link between the gas kinematics and FRB
progenitors.Comment: 5 pages, 4 figures, Accepted for publication in MNRAS,
https://www.youtube.com/watch?v=CldxLE7Pdwk&t=1
Spawning rings of exceptional points out of Dirac cones
The Dirac cone underlies many unique electronic properties of graphene and
topological insulators, and its band structure--two conical bands touching at a
single point--has also been realized for photons in waveguide arrays, atoms in
optical lattices, and through accidental degeneracy. Deformations of the Dirac
cone often reveal intriguing properties; an example is the quantum Hall effect,
where a constant magnetic field breaks the Dirac cone into isolated Landau
levels. A seemingly unrelated phenomenon is the exceptional point, also known
as the parity-time symmetry breaking point, where two resonances coincide in
both their positions and widths. Exceptional points lead to counter-intuitive
phenomena such as loss-induced transparency, unidirectional transmission or
reflection, and lasers with reversed pump dependence or single-mode operation.
These two fields of research are in fact connected: here we discover the
ability of a Dirac cone to evolve into a ring of exceptional points, which we
call an "exceptional ring." We experimentally demonstrate this concept in a
photonic crystal slab. Angle-resolved reflection measurements of the photonic
crystal slab reveal that the peaks of reflectivity follow the conical band
structure of a Dirac cone from accidental degeneracy, whereas the complex
eigenvalues of the system are deformed into a two-dimensional flat band
enclosed by an exceptional ring. This deformation arises from the dissimilar
radiation rates of dipole and quadrupole resonances, which play a role
analogous to the loss and gain in parity-time symmetric systems. Our results
indicate that the radiation that exists in any open system can fundamentally
alter its physical properties in ways previously expected only in the presence
of material loss and gain
Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber
spectrograph designed for the prime focus of the 8.2m Subaru telescope. The
metrology camera system of PFS serves as the optical encoder of the COBRA fiber
motors for the configuring of fibers. The 380mm diameter aperture metrology
camera will locate at the Cassegrain focus of Subaru telescope to cover the
whole focal plane with one 50M pixel Canon CMOS sensor. The metrology camera is
designed to provide the fiber position information within 5{\mu}m error over
the 45cm focal plane. The positions of all fibers can be obtained within 1s
after the exposure is finished. This enables the overall fiber configuration to
be less than 2 minutes.Comment: 10 pages, 12 figures, SPIE Astronomical Telescopes and
Instrumentation 201
Solution-based growth of ZnO nanorods for light-emitting devices: Hydrothermal vs. electrodeposition
ZnO nanorods have been grown by two inexpensive, solution-based, low-temperature methods: hydrothermal growth and electrodeposition. Heterojunction n-ZnO nanorods/p-GaN light-emitting diodes have been studied for different nanorod growth methods and different preparation of the seed layer. We demonstrate that both the nanorod properties and the device performance are strongly dependent on the growth method and seed layer. All the devices exhibit light emission under both forward and reverse bias, and the emission spectra can be tuned by ZnO nanorod deposition conditions. Electrodeposition of rods or a seed layer results in yellow emission, while conventional hydrothermal growth results in violet emission. © The Author(s) 2010. This article is published with open access at Springerlink.com.published_or_final_versionSpringer Open Choice, 01 Dec 201
Transcription of Muscle Actin Genes by a Nuclear Form of Mitochondrial RNA Polymerase
Actins are the major constituent of the cytoskeleton. In this report we present several lines of evidence that muscle actin genes are transcribed by nuclear isoform of mitochondrial RNA polymerase (spRNAP-IV) whereas the non-muscle actin genes are transcribed by the conventional RNA polymerase II (PolII). We show that mRNA level of muscle actin genes are resistant to PolII inhibitors α-amanitin and triptolide as well as insensitive to knockdown of PolII but not to knockdown of spRNAP-IV, in contrast to non-muscle actin genes in several cell lines. Similar results are obtained from nuclear run-on experiments. Reporter assay using muscle actin or PolII gene promoters also demonstrate the differential sensitivity to PolII inhibitors. Finally, chromatin-immunoprecipitation experiment was used to demonstrate that spRNAP-IV is associated with promoter of muscle actin genes but not with that of non-muscle gene and knockdown of spRNAP-IV depleted this polymerase from muscle actin genes. In summary, these experiments indicate that the two types of actin genes are transcribed by different transcription machinery. We also found that POLRMT gene is transcribed by spRNAP-IV, and actin genes are sensitive to oligomycin, suggesting a transcription coupling between mitochondria and nucleus
Scientific case for avoiding dangerous climate change to protect young people and nature
28 pages, 6 figures; version submitted to Proceedings of the National Academy of SciencesPeer reviewe
- …