2,210 research outputs found

    Patently Ours? Constitutional Challenges to DNA Patents

    Get PDF

    Patently Ours? Constitutional Challenges to DNA Patents

    Get PDF

    Transmission Power Scheduling for Energy Harvesting Sensor in Remote State Estimation

    Get PDF
    We study remote estimation in a wireless sensor network. Instead of using a conventional battery-powered sensor, a sensor equipped with an energy harvester which can obtain energy from the external environment is utilized. We formulate this problem into an infinite time-horizon Markov decision process and provide the optimal sensor transmission power control strategy. In addition, a sub-optimal strategy which is easier to implement and requires less computation is presented. A numerical example is provided to illustrate the implementation of the sub-optimal policy and evaluation of its estimation performance.Comment: Extended version of article to be published in the Proceedings of the 19th IFAC World Congress, 201

    Data-Driven Power Control for State Estimation: A Bayesian Inference Approach

    Full text link
    We consider sensor transmission power control for state estimation, using a Bayesian inference approach. A sensor node sends its local state estimate to a remote estimator over an unreliable wireless communication channel with random data packet drops. As related to packet dropout rate, transmission power is chosen by the sensor based on the relative importance of the local state estimate. The proposed power controller is proved to preserve Gaussianity of local estimate innovation, which enables us to obtain a closed-form solution of the expected state estimation error covariance. Comparisons with alternative non data-driven controllers demonstrate performance improvement using our approach

    The origin of the complex character of the ohmic impedance

    Get PDF
    The local and global Ohmic response for an electrode exhibiting geometry-induced potential and/or current distributions has recently been shown to be represented by a frequency-dependent complex impedance. A physical explanation for this result is provided in terms of the radial contribution to local current density and the decrease in current density along the current lines. Experiments performed with Cu/Al and Mg/Al galvanic couples show that, in regions where a radial current density does not exist, the local Ohmic impedance is independent of position; whereas, in regions where the radial current density cannot be neglected, the local Ohmic impedance is a function of position. Simulations performed on recessed electrodes show that, even in the absence of a radial current, an axial variation of current density gives rise to a complex Ohmic impedance. The complex character of the Ohmic impedance shows that an equivalent circuit, using the usual two-terminal resistor to represent the Ohmic contribution of the electrolyte, provides an inadequate representation of an electrode with geometry-induced current and potential distributions

    Non-Repudiation In Web Services.

    Get PDF
    A web service is a set-of-.programmable functions that could be invoked protocols, and consumed through some internet The design of Web services has been plagued with security flaws. Web services invocations could be executed on the fly with the invokers remain anonymous

    Local electrochemical impedance spectroscopy: A review and some recent developments

    Get PDF
    Local electrochemical impedance spectroscopy (LEIS), which provides a powerful tool for exploration of electrode heterogeneity, has its roots in the development of electrochemical techniques employing scanning of microelectrodes. The historical development of local impedance spectroscopy measurements is reviewed, and guidelines are presented for implementation of LEIS. The factors which control the limiting spatial resolution of the technique are identified. The mathematical foundation for the technique is reviewed, including definitions of interfacial and local Ohmic impedances on both local and global scales. Experimental results for the reduction of ferricyanide show the correspondence between local and global impedances. Simulations for a single Faradaic reaction on a disk electrode embedded in an insulator are used to show that the Ohmic contribution, traditionally considered to be a real value, can have complex character in certain frequency ranges

    Coexistence of synchronization and anti-synchronization in chaotic systems

    Get PDF
    The coexistence of anti-synchronization and synchronization in chaotic systems is investigated. A novel algorithm is proposed to determine the variables of the master system that should anti-synchronize with corresponding variables of the slave system. Control strategies that guarantee the coexistence of synchronization and anti-synchronization in the unified chaotic system are presented; while numerical simulations are employed to validate and illustrate the effectiveness of the proposed method
    corecore