86 research outputs found

    Type-specific radioimmunoassays for the gp70s of mink cell focus-inducing murine leukemia viruses: expression of a cross-reacting antigen in cells infected with the friend strain of the spleen focus-forming virus

    Get PDF
    We have isolated the gp70 of a helper-independent strain of a Friend mink cell focus-inducing (MCF) virus, Fr-MCF-1. This recombinant virus, like the previously described AKR-MCF viruses, has been shown by both biological and biochemical means to be an envelope gene recombinant between Friend murine leukemia virus (F-MuLV) and a mouse xenotropic virus. Utilizing (125)I- labeled Fr-MCF-1 gp70 and antiserum prepared against an MCF strain of Moloney type-C virus (Mol-MCF(83)), we have developed a radioimmunoassay which detects immunological determinant (s)contained in the gp70s of MCF viruses derived from F-MuLV, Mol-MuLV, and AKR-MuLV. This MCF determinant(s) is not detected in the ecotropic parents of each of these MCF viruses, nor in helper-independent murine xenotropic viruses derived from Swiss or BALB/c mice. A protein partially cross-reactive with the MCF gp70 determinant(s) is detected in a replicating xenotropic virus derived from NZB mice. Utilizing this MCF gp70 specific immunoassay, we can detect a cross-reacting gene product coded for by the Friend strain of the spleen focus-forming virus (SFFV) in rat fibroblasts nonproductively infected with SFFV. The results support earlier molecular hybridization studies which indicated that the genome of SFFV contains genetic information derived from both F-MuLV and xenotropic virus, and that the xenotropic-related sequences in SFFV are highly related to those found in MCF murine type-C viruses

    Subgenomic fragment of molecular cloned Friend murine leukemia virus DNA contains the gene(s) responsible for Friend murine leukemia virus-induced disease.

    No full text
    Friend murine leukemia virus (G-MuLV) is a helper-independent, type C retrovirus isolated from stocks of Friend virus complex (spleen focus-forming virus plus MuLV). In cell culture, F-MuLV has an ecotropic and NB-tropic host range and causes XC cells to fuse. When injected into newborn NIH Swiss mice, F-MuLV produces hepatosplenomegaly, severe anemia, and numerous circulating hematopoietic precursors in the peripheral blood with normal thymus and lymph nodes after 3 to 6 weeks. Recently, we molecularly cloned an 8.5-kilobase pair (kbp) form of F-MuLV DNA from which we could recover the pathogenic F-MuLV virus by DNA transfection of NIH 3T3 cells. From this molecularly cloned F-MuLV DNA, we have now subcloned in pBR322 a 4.1-kbp HindIII fragment which contains in continuity 3.0 kbp from the 3' terminus (env and c region), 0.6 kbp of the terminal repeat sequences, and 0.5 kbp from the 5'terminus of the viral RNA (genome). NIH 3T3 fibroblasts were transfected with this DNA fragment an then infected with the wild mouse amphotropic retrovirus (cl 1504-A). In cell culture, 1504-A is a helper-independent type C virus which has an N-tropic host range and does not cause fusion of XC cells. When injected into newborn NIH Swiss mice, 1504-A does not produce splenomegaly or thymic enlargement in mice held for up to 8 months. The transfection with the F-MuLV fragment and the infection with 1504-A consistently yielded virus preparations that were XC positive. From such virus stocks we were able to isolate both helper-independent and replication-defective XC-positive viruses. The helper-independent virus was shown to be a recombinant virus since it contains a gp70 molecule derived at least in part from F-MuLV and a specific gag precursor derived from 1504-A as determined by radioactive immune precipitation assays. When injected into newborn Swiss mice, the recombinant helper-independent virus caused hepatosplenomegaly in approximately 50% of the mice in 6 to 8 weeks. The histology of the diseased splenic tissue was indistinguishable from that seen in the disease caused by the whole F-MuLV. The replication-defective virus could be pseudotyped with new 1504-A virus, and this viral complex also caused the F-MuLV disease picture when the complex was injected into newborn Swiss mice. We conclude that the genetic information responsible for the pathogenicity of F-MuLV is contained within the 4.1-kbp DNA fragment, which includes env gene sequences, the terminal repeat sequences, and the c region sequences of the F-MuLV genome
    • …
    corecore