256 research outputs found
Numerical Simulations of Instabilities in Single-Hole Office Elements
An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities
Low-Cost Flow Visualization for a Supersonic Ejector
Shadowgraph techniques were applied to the cold flow ejector facility at the Propulsion Research Center at the University of Alabama in Huntsville. The setup for the experiments was relatively simple and was accomplished at very little cost. Series of shadowgraph images were taken of both dual nozzle and single nozzle strut based ejectors operating over a range of chamber pressures. The density gradient patterns in the shadowgraphs were compared to pressure data measured along the top and side walls of the mixing duct. The shadowgraph images showed the presence of barrel shocks emanating from the nozzles which at low pressures terminated in Mach disks and at higher pressures extended beyond the barrel shape and reflected off the walls of the duct. Based on pressure data from previous testing, reflected shocks were expected on the walls of the duct. The shadowgraph images confirmed the locations of these reflected shocks on the top wall of the duct. The shadowgraph images also showed the structure change which correlated to a change in pitch of the ejector noise, and corresponded to a change in trend of the duct wall pressure ratio distributions. The images produced from the setup provided insight into the complex flow behavior inside the ejector duct. In addition, the techniques were a valuable tool as an educational device for students
Phenylethynyl Terminated Imide (PETI) Composites Made by High Temperature Vartm
The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade. As these advanced structures increase in size and complexity, their production costs have grown significantly. A major contributor to these manufacturing costs is the requirement of elevated pressures, during high temperature processing, to create fully consolidated composite parts. Recently, NASA Langley has licensed a series of low viscosity Phenyl Ethynyl Terminated Imide, PETI, oligomers that possess a wide processing window to allow for Resin Transfer Molding, RTM, processing. These resins, PETI-8 and PETI-330, demonstrate void fractions of approx.1% under elevated pressure consolidation. However, when used with a standardized thermal curing cycle in a High Temperature Vacuum Assisted RTM (HT-VARTM) process, they display undesirable void contents in excess of 7%. It was determined previously that under the thermal cycles used for laminate fabrication, the phenylethynyl endcap underwent degradation leading to volatile evolution. Modifications to the processing cycle used in the laminate fabrication have reduced the void content significantly (typically less than 3%) for carbon fiber biaxially woven fabric. For carbon fiber uniaxial fabric, void contents of less than 2% have been obtained using both PETI-8 and PETI-330. The resins were infused into carbon fiber preforms at 260 C and cured between 316 C and 371 C. Photomicrographs of the panels were taken and void contents were determined by acid digestion. Mechanical properties of the panels were determined at both room and elevated temperatures. These include short beam shear and flexure tests. The results of this work are presented herein
Recommended from our members
Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts
The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness
Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts
The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness
Uncertainty Analysis of Experimental Discharge Coefficients in Additively Manufactured Liquid Injector Elements
Screening of two additively manufactured liquid injector designs was conducted in the UAH high pressure spray facility. Four variants of each geometry with slightly different dimensions were obtained from eleven separate commercial additive manufacturing services. The devices were manufactured from Inconel 625 using the selective laser melting (SLM) powder bed process. The devices were cold flowed with water over a range of relevant pressure drops (75 psi to 1500 psi) to produce water flow rates from 0.037 to 1.75 lbm/s into ambient back pressure. Discharge coefficients determined from the testing along with the associated uncertainties provide insight into characteristic flow performance variabilities that can be expected from the SLM process for similar geometries
Recommended from our members
IFR fuel cycle
The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation
Recommended from our members
Hot startup experience with electrometallurgical treatment of spent nuclear fuel
The treatment of spent metal fuel from the EBR-II fast reactor commenced in June of 1996 at the Fuel Conditioning Facility on the Argonne-West site in Idaho, USA. During the first year of hot operations, 20 fuel assemblies entered processing and 6 low enrichment uranium product ingots were produced. Results are presented for the various process steps with decontamination factors achieved and equipment operational history reported
Recommended from our members
Safety Aspects of the IFR Pyroprocess Fuel Cycle
This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs
Recommended from our members
IFR Fuel Cycle Demonstration in the EBR-II Fuel Cycle Facility
The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. 5 refs., 4 figs
- …