791 research outputs found
Image Reversal Optimization and a Positive Tone Lift-Off Process with AZ5214-E Photoresist
An optimum reversal process utilizing AZ5214-E photoresist has been defined with respect to profile angle along with statistical modeling of critical variables on the resulting resist profile. A novel positive tone lift-off process was also attempted with AZ5214-E with limited success
Epicycles and Poincar\'{e} Resonances in General Relativity
The method of geodesic deviations provides analytic approximations to
geodesics in arbitrary background space-times. As such the method is a useful
tool in many practical situations. In this note we point out some subtleties in
the application of the method related to secular motions, in first as well as
in higher order. In particular we work out the general second-order
contribution to bound orbits in Schwarzschild space-time and show that it
provides very good analytical results all the way up to the innermost stable
circular orbit.Comment: 24 pages, 4 figure
Key principle of the efficient running, swimming, and flying
Empirical observations indicate striking similarities among locomotion in
terrestrial animals, birds, and fish, but unifying physical grounds are
lacking. When applied to efficient locomotion, the analytical mechanics
principle of minimum action yields two patterns of mechanical similarity via
two explicit spatiotemporal coherent states. In steady locomotory modes, the
slow muscles determining maximal optimum speeds maintain universal intrinsic
muscular pressure. Otherwise, maximal speeds are due to constant mass-dependent
stiffness of fast muscles generating a uniform force field, exceeding
gravitation. Being coherent in displacements, velocities and forces, the body
appendages of animals are tuned to natural propagation frequency through the
state-dependent elastic muscle moduli.
Key words: variational principle of minimum action (04.20.Fy), locomotion
(87.19.ru), biomechanics (87.85.G-).Comment: Submitted to the Europhysical Letter
Predation on Multiple Trophic Levels Shapes the Evolution of Pathogen Virulence
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions
No hypoperfusion is produced in the epicardium during application of myocardial topical negative pressure in a porcine model
ABSTRACT: BACKGROUND: Topical negative pressure (TNP), commonly used in wound therapy, has been shown to increase blood flow and stimulate angiogenesis in skeletal muscle. We have previously shown that a myocardial TNP of -50 mmHg significantly increases microvascular blood flow in the myocardium. When TPN is used in wound therapy (on skeletal and subcutaneous tissue) a zone of relative hypoperfusion is seen close to the wound edge. Hypoperfusion induced by TNP is thought to depend on tissue density, distance from the negative pressure source, and the amount negative pressure applied. When applying TNP to the myocardium, a significant, long-standing zone of hypoperfusion could theoretically cause ischemia, and negative effects on the myocardium. The current study was designed to elucidate whether hypoperfusion was produced during myocardial TNP. METHODS: Six pigs underwent median sternotomy. Laser Doppler probes were inserted horizontally into the heart muscle in the LAD area, at depths of approximately, 1-2 mm. The microvascular blood flow was measured before and after the application of a TNP. Analyses were performed before left anterior descending artery (LAD) occlusion (normal myocardium) and after 20 minutes of LAD occlusion (ischemic myocardium). RESULTS: A TNP of -50 mmHg induced a significant increase in microvascular blood flow in normal myocardium (**p = 0.01), while -125 mmHg did not significantly alter the microvascular blood flow. In ischemic myocardium a TNP of -50 mmHg induced a significant increase in microvascular blood flow (*p = 0.04), while -125 mmHg did not significantly alter the microvascular blood flow. CONCLUSION: No hypoperfusion could be observed in the epicardium in neither normal nor ischemic myocardium during myocardial TNP
A compare between myocardial topical negative pressure levels of -25 mmHg and -50 mmHg in a porcine model
<p>Abstract</p> <p>Background</p> <p>Topical negative pressure (TNP), widely used in wound therapy, is known to stimulate wound edge blood flow, granulation tissue formation, angiogenesis, and revascularization. We have previously shown that application of a TNP of -50 mmHg to the myocardium significantly increases microvascular blood flow in the underlying tissue. We have also shown that a myocardial TNP levels between -75 mmHg and -150 mmHg do not induce microvascular blood flow changes in the underlying myocardium. The present study was designed to elucidate the difference between -25 mmHg and -50 mmHg TNP on microvascular flow in normal and ischemic myocardium.</p> <p>Methods</p> <p>Six pigs underwent median sternotomy. The microvascular blood flow in the myocardium was recorded before and after the application of TNP using laser Doppler flowmetry. Analyses were performed before left anterior descending artery (LAD) occlusion (normal myocardium), and after 20 minutes of LAD occlusion (ischemic myocardium).</p> <p>Results</p> <p>A TNP of -25 mmHg significantly increased microvascular blood flow in both normal (from 263.3 ± 62.8 PU before, to 380.0 ± 80.6 PU after TNP application, * <it>p </it>= 0.03) and ischemic myocardium (from 58.8 ± 17.7 PU before, to 85.8 ± 20.9 PU after TNP application, * <it>p </it>= 0.04). A TNP of -50 mmHg also significantly increased microvascular blood flow in both normal (from 174.2 ± 20.8 PU before, to 240.0 ± 34.4 PU after TNP application, * <it>p </it>= 0.02) and ischemic myocardium (from 44.5 ± 14.0 PU before, to 106.2 ± 26.6 PU after TNP application, ** <it>p </it>= 0.01).</p> <p>Conclusion</p> <p>Topical negative pressure of -25 mmHg and -50 mmHg both induced a significant increase in microvascular blood flow in normal and in ischemic myocardium. The increase in microvascular blood flow was larger when using -25 mmHg on normal myocardium, and was larger when using -50 mmHg on ischemic myocardium; however these differences were not statistically significant.</p
- …