7 research outputs found

    Post-extraction mesio-distal gap reduction assessment by confocal laser scanning microscopy - a clinical 3-month follow-up study

    Full text link
    [EN] AimThe aim of this 3-month follow-up study is to quantify the reduction in the mesio-distal gap dimension (MDGD) that occurs after tooth extraction through image analysis of three-dimensional images obtained with the confocal laser scanning microscopy (CLSM) technique. Materials and MethodsFollowing tooth extraction, impressions of 79 patients 1month and 72 patients 3months after tooth extraction were obtained. Cast models were processed by CLSM, and MDGD changes between time points were measured. ResultsThe mean mesio-distal gap reduction 1month after tooth extraction was 343.4m and 3months after tooth extraction was 672.3m. The daily mean gap reduction rate during the first term (between baseline and 1month post-extraction measurements) was 10.3m/day and during the second term (between 1 and 3months) was 5.4m/day. ConclusionsThe mesio-distal gap reduction is higher during the first month following the extraction and continues in time, but to a lesser extent. When the inter-dental contacts were absent, the mesio-distal gap reduction is lower. When a molar tooth is extracted or the distal tooth to the edentulous space does not occlude with an antagonist, the mesio-distal gap reduction is larger. The consideration of mesio-distal gap dimension changes can help improve dental treatment planning.The authors would like to express their gratitude to MEC (contract grant number AP2008-01653), to FEDER, to the Generalitat Valenciana for its help in the CLSM acquisition (MY08/ISIRM/S/100), to the Universitat Politecnica de Valencia (PAID-05-12) and to Dr. Asuncion Jaime for her translation assistance.García-Herraiz, A.; Silvestre, FJ.; Leiva García, R.; Crespo Abril, F.; Garcia-Anton, J. (2017). Post-extraction mesio-distal gap reduction assessment by confocal laser scanning microscopy - a clinical 3-month follow-up study. Journal Of Clinical Periodontology. 44(5):548-555. https://doi.org/10.1111/jcpe.12706S548555445Aguilar, M. L., Elias, A., Vizcarrondo, C. E. T., & Psoter, W. J. (2010). Analysis of three-dimensional distortion of two impression materials in the transfer of dental implants. The Journal of Prosthetic Dentistry, 103(4), 202-209. doi:10.1016/s0022-3913(10)60032-7Amit, G., JPS, K., Pankaj, B., Suchinder, S., & Parul, B. (2012). Periodontally accelerated osteogenic orthodontics (PAOO) - a review. Journal of Clinical and Experimental Dentistry, e292-296. doi:10.4317/jced.50822Armitage, G. C. (1999). Development of a Classification System for Periodontal Diseases and Conditions. Annals of Periodontology, 4(1), 1-6. doi:10.1902/annals.1999.4.1.1Belli, R., Pelka, M., Petschelt, A., & Lohbauer, U. (2009). In vitro wear gap formation of self-adhesive resin cements: A CLSM evaluation. Journal of Dentistry, 37(12), 984-993. doi:10.1016/j.jdent.2009.08.006Belli, R., Rahiotis, C., Schubert, E. W., Baratieri, L. N., Petschelt, A., & Lohbauer, U. (2011). Wear and morphology of infiltrated white spot lesions. Journal of Dentistry, 39(5), 376-385. doi:10.1016/j.jdent.2011.02.009Brauchli, L. M., Baumgartner, E.-M., Ball, J., & Wichelhaus, A. (2011). Roughness of enamel surfaces after different bonding and debonding procedures. Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie, 72(1), 61-67. doi:10.1007/s00056-010-0002-3Chen, S. Y., Liang, W. M., & Chen, F. N. (2004). Factors affecting the accuracy of elastometric impression materials. Journal of Dentistry, 32(8), 603-609. doi:10.1016/j.jdent.2004.04.002Christou, P., & Kiliaridis, S. (2007). Three-dimensional changes in the position of unopposed molars in adults. The European Journal of Orthodontics, 29(6), 543-549. doi:10.1093/ejo/cjm036Craddock, H. L., Youngson, C. C., Manogue, M., & Blance, A. (2007). Occlusal Changes Following Posterior Tooth Loss in Adults. Part 2. Clinical Parameters Associated with Movement of Teeth Adjacent to the Site of Posterior Tooth Loss. Journal of Prosthodontics, 16(6), 495-501. doi:10.1111/j.1532-849x.2007.00223.xFaria, A. C. L., Rodrigues, R. C. S., Macedo, A. P., Mattos, M. da G. C. de, & Ribeiro, R. F. (2008). Accuracy of stone casts obtained by different impression materials. Brazilian Oral Research, 22(4), 293-298. doi:10.1590/s1806-83242008000400002García-Herraiz, A., Leiva-García, R., Cañigral-Ortiz, A., Silvestre, F. J., & García-Antón, J. (2011). Confocal laser scanning microscopy for the study of the morphological changes of the postextraction sites. Microscopy Research and Technique, 75(4), 513-519. doi:10.1002/jemt.21085Gragg, K. L., Shugars, D. A., Bader, J. D., Elter, J. R., & White, B. A. (2001). Movement of Teeth Adjacent to Posterior Bounded Edentulous Spaces. Journal of Dental Research, 80(11), 2021-2024. doi:10.1177/00220345010800111401LINDSKOG-STOKLAND, B., HANSEN, K., TOMASI, C., HAKEBERG, M., & WENNSTRÖM, J. L. (2011). Changes in molar position associated with missing opposed and/or adjacent tooth: a 12-year study in women. Journal of Oral Rehabilitation, 39(2), 136-143. doi:10.1111/j.1365-2842.2011.02252.xLove, W. D., & Adams, R. L. (1971). Tooth movement into edentulous areas. The Journal of Prosthetic Dentistry, 25(3), 271-278. doi:10.1016/0022-3913(71)90188-0Nishikawa, T., Masuno, K., Mori, M., Tajime, Y., Kakudo, K., & Tanaka, A. (2006). Calcification at the Interface Between Titanium Implants and Bone: Observation With Confocal Laser Scanning Microscopy. Journal of Oral Implantology, 32(5), 211-217. doi:10.1563/799.1Pereira, J. R., Murata, K. Y., Valle, A. L. do, Ghizoni, J. S., & Shiratori, F. K. (2010). Linear dimensional changes in plaster die models using different elastomeric materials. Brazilian Oral Research, 24(3), 336-341. doi:10.1590/s1806-83242010000300013Schilling, T., Müller, M., Minne, H. W., & Ziegler, R. (1998). Influence of Inflammation-Mediated Osteopenia on the Regional Acceleratory Phenomenon and the Systemic Acceleratory Phenomenon During Healing of a Bone Defect in the Rat. Calcified Tissue International, 63(2), 160-166. doi:10.1007/s002239900508Scivetti, M., Pilolli, G. P., Corsalini, M., Lucchese, A., & Favia, G. (2007). Confocal laser scanning microscopy of human cementocytes: Analysis of three-dimensional image reconstruction. Annals of Anatomy - Anatomischer Anzeiger, 189(2), 169-174. doi:10.1016/j.aanat.2006.09.009SHUGARS, D. A., BADER, J. D., PHILLIPS, S. W., WHITE, B. A., & BRANTLEY, C. F. (2000). THE CONSEQUENCES OF NOT REPLACING A MISSING POSTERIOR TOOTH. The Journal of the American Dental Association, 131(9), 1317-1323. doi:10.14219/jada.archive.2000.0385Thalmair, T., Fickl, S., Schneider, D., Hinze, M., & Wachtel, H. (2013). Dimensional alterations of extraction sites after different alveolar ridge preservation techniques - a volumetric study. Journal of Clinical Periodontology, 40(7), 721-727. doi:10.1111/jcpe.12111Thongthammachat, S., Moore, B. K., Barco, M. T., Hovijitra, S., Brown, D. T., & Andres, C. J. (2002). Dimensional accuracy of dental casts: Influence of tray material, impression material, and time. Journal of Prosthodontics, 11(2), 98-108. doi:10.1053/jopr.2002.125192Van der Weijden, F., Dell’Acqua, F., & Slot, D. E. (2009). Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. Journal of Clinical Periodontology, 36(12), 1048-1058. doi:10.1111/j.1600-051x.2009.01482.xWeinstein, S. (1967). Minimal forces in tooth movement. American Journal of Orthodontics, 53(12), 881-903. doi:10.1016/0002-9416(67)90163-7Windisch, S. I., Jung, R. E., Sailer, I., Studer, S. P., Ender, A., & Hämmerle, C. H. F. (2007). A new optical method to evaluate three-dimensional volume changes of alveolar contours: a methodological in vitro study. Clinical Oral Implants Research, 18(5), 545-551. doi:10.1111/j.1600-0501.2007.01382.xYAMADA, M. K., & WATARI, F. (2003). Imaging and Non-Contact Profile Analysis of Nd: YAG Laser-Irradiated Teeth by Scanning Electron Microscopy and Confocal Laser Scanning Microscopy. Dental Materials Journal, 22(4), 556-568. doi:10.4012/dmj.22.55
    corecore