34 research outputs found

    Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    Get PDF
    Item does not contain fulltextOBJECTIVE: To evaluate the additional value of a 45� oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. MATERIALS AND METHODS: Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45� oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. RESULTS: The interobserver agreement (?) and agreement score [AS (\%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes (? 0.61-0.92, AS 84-95\%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p?<?0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p?=?0.50) nor posteriorly (p?=?1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86\% from 7\%) and posterior (to 86\% from 48\%) syndesmotic injury when compared to the axial plane. CONCLUSION: Our results show the additional value of an 45� oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique MRI plane were closer to the diagnosis as assumed by the Lauge-Hansen classification than in the axial plane. With more accurate information, the surgeon can better decide when to stabilize syndesmotic injury in acute ankle fractures

    Evidence Based Development of a Novel Lateral Fibula Plate (VariAx Fibula) Using a Real CT Bone Data Based Optimization Process During Device Development

    Get PDF
    Development of novel implants in orthopaedic trauma surgery is based on limited datasets of cadaver trials or artificial bone models. A method has been developed whereby implants can be constructed in an evidence based method founded on a large anatomic database consisting of more than 2.000 datasets of bones extracted from CT scans. The aim of this study was the development and clinical application of an anatomically pre-contoured plate for the treatment of distal fibular fractures based on the anatomical database

    Correlation between radiological assessment of acute ankle fractures and syndesmotic injury on MRI

    Get PDF
    Item does not contain fulltextOBJECTIVE: Owing to the shortcomings of clinical examination and radiographs, injury to the syndesmotic ligaments is often misdiagnosed. When there is no indication requiring that the fractured ankle be operated on, the syndesmosis is not tested intra-operatively, and rupture of this ligamentous complex may be missed. Subsequently the patient is not treated properly leading to chronic complaints such as instability, pain, and swelling. We evaluated three fracture classification methods and radiographic measurements with respect to syndesmotic injury. MATERIALS AND METHODS: Prospectively the radiographs of 51 consecutive ankle fractures were classified according to Weber, AO-M�ller, and Lauge-Hansen. Both the fracture type and additional measurements of the tibiofibular clear space (TFCS), tibiofibular overlap (TFO), medial clear space (MCS), and superior clear space (SCS) were used to assess syndesmotic injury. MRI, as standard of reference, was performed to evaluate the integrity of the distal tibiofibular syndesmosis. The sensitivity and specificity for detection of syndesmotic injury with radiography were compared to MRI. RESULTS: The Weber and AO-M�ller fracture classification system, in combination with additional measurements, detected syndesmotic injury with a sensitivity of 47\% and a specificity of 100\%, and Lauge-Hansen with both a sensitivity and a specificity of 92\%. TFCS and TFO did not correlate with syndesmotic injury, and a widened MCS did not correlate with deltoid ligament injury. CONCLUSION: Syndesmotic injury as predicted by the Lauge-Hansen fracture classification correlated well with MRI findings. With MRI the extent of syndesmotic injury and therefore fracture stage can be assessed more accurately compared to radiographs

    Posterior malleolus fractures

    No full text
    corecore