571 research outputs found

    Computer Analysis of Serial Electrocardiograms

    Get PDF
    journal articleBiomedical Informatic

    Numerical Approximation of Diffusive Capture Rates by Planar and Spherical Surfaces with Absorbing Pores

    Get PDF
    In 1977 Berg and Purcell published a landmark paper entitled Physics of Chemore- ception, which examined how a bacterium can sense a chemical attractant in the fluid surrounding it [H. C. Berg and E. M. Purcell, Biophys J, 20 (1977), pp. 193–219]. At small scales the attrac- tant molecules move by Brownian motion and diffusive processes dominate. This example is the archetype of diffusive signaling problems where an agent moves via a random walk until it either strikes or eludes a target. Berg and Purcell modeled the target as a sphere with a set of small circular targets (pores) that can capture a diffusing agent. They argued that, in the limit of small radii and wide spacing, each pore could be modeled independently as a circular pore on an infinite plane. Using a known exact solution, they showed the capture rate to be proportional to the combined perimeter of the pores. In this paper we study how to improve this approximation by including interpore competition effects and verify this result numerically for a finite collection of pores on a plane or a sphere. Asymptotically we have found the corrections to the Berg–Purcell formula that account for the enhancement of capture due to the curvature of the spherical target and the inhibition of capture due to the spatial interaction of the pores. Numerically we develop a spectral boundary ele- ment method for the exterior mixed Neumann–Dirichlet boundary value problem. Our formulation reduces the problem to a linear integral equation, specifically a Neumann to Dirichlet map, which is supported only on the individual pores. The difficulty is that both the kernel and the flux are singular, a notorious obstacle in such problems. A judicious choice of singular boundary elements allows us to resolve the flux singularity at the edge of the pore. In biological systems there can be thousands of receptors whose radii are 0.1% the radius of the cell. Our numerics can now resolve this realistic limit with an accuracy of roughly one part in 108

    First Passage Statistics for the Capture of a Brownian Particle by a Structured Spherical Target with Multiple Surface Traps

    Get PDF
    We study the first passage time problem for a diffusing molecule in an enclosed region to hit a small spherical target whose surface contains many small absorbing traps. This study is motivated by two examples of cellular transport. The first is the intracellular process through which proteins transit from the cytosol to the interior of the nucleus through nuclear pore complexes that are distributed on the nuclear surface. The second is the problem of chemoreception, in which cells sense their surroundings through diffusive contact with receptors distributed on the cell exterior. Using a matched asymptotic analysis in terms of small absorbing pore radius, we derive and numerically verify a high order expansion for the capacitance of the structured target which incorporates surface effects and gives explicit information on interpore interaction through a Coulomb-type discrete energy with additional logarithmic dependencies. In the large NN dilute surface trap fraction limit, a single homogenized Robin boundary condition ∂nv+κv=0 \partial_n v + \kappa v = 0 is derived in which κ\kappa depends on the total absorbing fraction, the characteristic pore scale, and parameters relating to interpore interactions

    Boundary Homogenization and Capture Time Distributions of Semipermeable Membranes with Periodic Patterns of Reactive Sites

    Get PDF
    We consider the capture dynamics of a particle undergoing a random walk in a half- space bounded by a plane with a periodic pattern of absorbing pores. In particular, we numerically measure and asymptotically characterize the distribution of capture times. Numerically we develop a kinetic Monte Carlo (KMC) method that exploits exact solutions to create an efficient particle- based simulation of the capture time that deals with the infinite half-space exactly and has a run time that is independent of how far from the pores one begins. Past researchers have proposed homogenizing the surface boundary conditions, replacing the reflecting (Neumann) and absorbing (Dirichlet) boundary conditions with a mixed (Robin) boundary condition. We extend previous work to asymptotically determine the leakage parameter for the mixed boundary condition for arbitrary periodic pore configurations in the dilute fraction limit. In this asymptotic limit, we pose and solve an optimization problem for the Bravais lattice which maximizes the capture rate of the absorbing pores, finding the hexagonal lattice to be the global maximum

    Moth Mating: Modeling Female Pheromone Calling and Male Navigational Strategies to Optimize Reproductive Success

    Get PDF
    Male and female moths communicate in complex ways to search for and to select a mate. In a process termed calling, females emit small quantities of pheromones, generating plumes that spread in the environment. Males detect the plume through their antennae and navigate toward the female. The reproductive process is marked by female choice and male–male competition, since multiple males aim to reach the female but only the first can mate with her. This provides an opportunity for female selection on male traits such as chemosensitivity to pheromone molecules and mobility. We develop a mathematical framework to investigate the overall mating likelihood, the mean first arrival time, and the quality of the first male to reach the female for four experimentally observed female calling strategies unfolding over a typical one-week mating period. We present both analytical solutions of a simplified model as well as results from agent-based numerical simulations. Our findings suggest that, by adjusting call times and the amount of released pheromone, females can optimize the mating process. In particular, shorter calling times and lower pheromone titers at onset of the mating period that gradually increase over time allow females to aim for higher-quality males while still ensuring that mating occurs by the end of the mating period
    • …
    corecore