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FIRST PASSAGE STATISTICS FOR THE CAPTURE OF A
BROWNIAN PARTICLE BY A STRUCTURED SPHERICAL

TARGET WITH MULTIPLE SURFACE TRAPS∗

ALAN E. LINDSAY† , ANDREW J. BERNOFF‡ , AND MICHAEL J. WARD§

Abstract. We study the first passage time problem for a diffusing molecule in an enclosed
region to hit a small spherical target whose surface contains many small absorbing traps. This study
is motivated by two examples of cellular transport. The first is the intracellular process through which
proteins transit from the cytosol to the interior of the nucleus through nuclear pore complexes that are
distributed on the nuclear surface. The second is the problem of chemoreception, in which cells sense
their surroundings through diffusive contact with receptors distributed on the cell exterior. Using
a matched asymptotic analysis in terms of small absorbing pore radius, we derive and numerically
verify a high order expansion for the capacitance of the structured target which incorporates surface
effects and gives explicit information on interpore interaction through a Coulomb-type discrete energy
with additional logarithmic dependencies. In the large N dilute surface trap fraction limit, a single
homogenized Robin boundary condition ∂nv + κv = 0 is derived in which κ depends on the total
absorbing fraction, the characteristic pore scale, and parameters relating to interpore interactions.

Key words. Brownian motion, Berg–Purcell, singular perturbations, homogenization, mean
first passage time
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1. Introduction. Many biological systems utilize diffusive transport to enable
the delivery of reactants or signaling molecules to specific spatial locations where
they can initiate some biological function. Depending on the particular setting, the
spatial region may have a complex geometry that contains obstacles to the diffusive
motion together with a heterogeneous distribution of delivery sites. The effectiveness
of the diffusion mechanism in light of these factors can be understood by studying the
first passage time statistics of Brownian walkers to small stationary targets. In many
biological settings, the number of individual molecules is typically very large, and so
the mean first passage time (MFPT) is an important quantity and the focus of many
recent studies [47, 24, 9, 43, 1, 32, 38, 37, 46, 15, 10, 12, 16].

One key intracellular process is the transport of proteins between the cell cyto-
plasm and the interior of the nucleus (cf. [28, 29, 22]). The cell nucleus is typically
spherical or ellipsoidal in shape and occupies roughly 10% of the total cell volume. The
nuclear surface is an impermeable double membrane that separates the chromosomes
from the cell cytoplasm [50]. The transit of proteins to the interior of the nucleus is
crucial to the development process and is regulated by the distribution of nuclear pore
complexes (NPCs) that cover the nuclear surface [50]. The nuclear radius is roughly
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4 microns, and there are estimated to be approximately N = 2000 nanotraps, each
of estimated radius 25 nanometers (cf. [29, 41]). This implies that roughly 2% of the
boundary of the nucleus is covered by nanotraps. One aim of this study is to analyze
a simple model for how the number and distribution of NPCs regulate the timescale
of transport over the nuclear barrier.

A second biophysical process motivating this study is chemoreception. Cells sense
their surroundings through contact with diffusing molecules at receptor sites dis-
tributed over their exterior membrane. Even if a small surface area fraction of the
cell exterior is occupied by receptors, its sensing ability can be near optimal, provided
the receptors are numerous and well distributed over the cell surface [4]. In this sce-
nario, our aim is to give a detailed first principles description of how the number and
spatial configuration of absorbing receptors dictate the statistics of contact events.

Motivated by these biological scenarios, we will analyze the MFPT and the stan-
dard deviation for Brownian motion in a bounded three-dimensional (3-D) domain
Ω ⊂ R

3 when there is a small, but structured, target sphere Ωε of radius ε � 1
centered at some x0 ∈ Ω. For simplicity, we will neglect the often important effect of
directed transport to the target site (cf. [28, 29]) and instead assume that there is a
simple Brownian motion to the target. The complicating factor in this problem is that
the boundary ∂Ωε of the target sphere is highly heterogeneous, of mixed Dirichlet–
Neumann type, and is assumed to consist of many small locally circular absorbing
patches, or nanotraps, on an otherwise reflecting surface. For a Brownian particle
with diffusivity D starting at x ∈ Ω\Ωε, the MFPT w(x) for the Brownian particle
to first encounter any of the absorbing surface patches is well known to satisfy the
narrow capture problem (cf. [40, 23])

Δw = − 1

D
, x ∈ Ω\Ωε ; ∂nw = 0 , x ∈ ∂Ω ,(1.1a)

w = 0 , x ∈ ∂Ωεa ; ∂nw = 0 , x ∈ ∂Ωεr ,(1.1b)

where ∂Ωεa is the multiply-connected absorbing set and ∂Ωεr is the reflecting portion
of the surface of the target. Here Ωε = x0+εΩ0, where Ω0 is the unit sphere centered
at the origin y = 0, where y ≡ ε−1(x− x0). We write ∂Ω0 = Γa ∪ Γr, where Γa and
Γr are the absorbing and reflecting portions of this reference unit sphere (see Figure 1
for the geometry).

In the limit ε → 0, a two-term expansion for the MFPT w(x) (cf. [11]; see

O(σ)O(σ)
Absorbing

Nanotraps

O(ε)

Ω

x0

x

Fig. 1. Schematic of a structured target centered at x0 ∈ Ω of radius O(ε) that has a collection
of N absorbing surface patches, referred to here as nanotraps, of common radius O(σ). A random
walker starts at location x ∈ Ω and eventually reaches an absorbing nanotrap.
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Principal Result 2.1 in section 2) is

(1.2) w(x) =
|Ω|

4πC0Dε

[
1− 4πC0ε

(
Gm(x;x0)−Rm(x0)

)
+O(ε2)

]
,

where Gm(x;x0) is the Neumann Green’s function of Ω with regular part Rm(x0)
satisfying

ΔGm =
1

|Ω| − δ(x− ξ) , x ∈ Ω ; ∂nGm = 0 , x ∈ ∂Ω ,(1.3a)

Gm(x;x0) ∼
1

4π|x− x0|
+Rm(x0) + o(1) as x → x0 ;

∫
Ω

Gm(x;x0) dx = 0 .

(1.3b)

The average MFPT, based on assuming a uniform distribution of starting locations,
is calculated from (1.2) as

(1.4) τ ≡ 1

|Ω\Ωε|

∫
Ω\Ωε

w dx =
|Ω|

4πC0Dε

[
1 + 4πεC0Rm(x0) +O(ε2)

]
.

The quantity τ provides the broadest measure of the timescale for the capture of
a Brownian particle by the structured target sphere. The term Rm(x0) captures
the dependence of τ on the spatial location of the target sphere in Ω, while the
spatially uniform parameter C0, known as the capacitance and defined below by the
local problem (1.5), encodes information on the number and spatial distribution of
absorbing nanotraps on the surface of the target.

As an extension to the MFPT analysis, in section 2 we follow [16] to calculate
an asymptotic expansion for the standard deviation Σ of the first passage process.
This new result, summarized in Principal Result 2.2 below, shows that in the region
where |x − x0| 	 O(ε), the first two terms in the asymptotic expansion of Σ are
independent of the starting point for the Brownian motion and agree precisely with
the two-term asymptotics for the average MFPT τ of (1.4). This result shows that for
a pure Brownian walk there is a significant spread in the distribution of first capture
times about the mean.

However, the main focus of this paper is to determine the capacitance C0 when the
spherical trap has a heterogeneous distribution of absorbing sites, such as displayed in
Figure 1. The capacitance C0 is defined in terms of a canonical exterior potential-field
problem with a prescribed flux at infinity, formulated as

Δv = 0 , y ∈ R
3 \ Ω0 ; v = 0 , y ∈ Γa , ∂nv = 0 , y ∈ Γr ,(1.5a)

lim
R→∞

∫
∂ΩR

∂nv ds = −4π ,(1.5b)

where ∂ΩR ≡ {y ∈ R
3 | |y| = R} and ΩR contains Ω0. In terms of this solution, C0

is defined by the far-field behavior

(1.5c) v =
1

|y| −
1

C0

[
1− p·y

|y|3

]
+ · · · as |y| → ∞ ,

where p is the dipole moment associated with the target. We will consider the case
where Ω0 is the unit sphere that has N small nonoverlapping absorbing locally circular
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surface nanotraps Γa = ∪N
k=1∂Ωk with locations yk and radii σak for k = 1, . . . , N ,

with |yj − yk| 	 O(σ) for j �= k, where σ � 1. In spherical coordinates, we write

yk = (sin θk cosφk, sin θk sinφk, cos θk)
T ,

(1.6)
∂Ωk ≡ {(θ, φ) | (θ − θk)

2 + sin2(θk)(φ − φk)
2 ≤ σ2a2k} ,

so that the kth nanotrap area is |∂Ωk| ≈ πa2kσ
2. In other cases where the target is

perfectly absorbing, explicit formulae for C0 are well known for some regular geome-
tries such as spheres, hemispheres, and ellipsoids [11]. In the simpler 2-D context,
the case of small circular targets with a nonuniform partially absorbing boundary was
analyzed in [32].

For our 3-D structured target problem (1.5), in section 3 we will use the method
of matched asymptotic expansions in the limit σ → 0 and for finite N to determine
an explicit four-term asymptotic expansion for C0, which depends on the radii ak
and locations yk of the centers of the nanotraps for k = 1, . . . , N . The analysis to
determine C0 is related to that done for the narrow escape problem in [12] in that it
relies on detailed knowledge of a certain surface Neumann Green’s function together
with the introduction of certain logarithmic switchback terms (cf. [30]) that arise
from the subdominant logarithmic singularity of this Green’s function. This surface
Green’s function G(y,y0) is the solution to

ΔG = 0 , r = |y| > 1 , 0 < θ < π , 0 < φ < 2π ; G ∼ 1

4π|y| as |y| → ∞ ,

(1.7a)

−∂rG |r=1=
1

sin θ0
δ(φ − φ0)δ(θ − θ0) , 0 < θ < π, 0 < φ < 2π ,(1.7b)

where y0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)
T , which is given explicitly by (cf. [35],

[25])

(1.7c) G(y;y0) =
1

2π

[
1

|y − y0|
− 1

2
log

(
1− y·y0 + |y − y0|

|y| − y·y0

)]
.

Our main result for C0 is given below in Principal Result 3.1 of section 3. For the spe-
cial case where the nanotraps have a common radius σ � 1, but with an arbitrary non-
overlapping spatial distribution on the surface, we will show that C0 = C0(y1, . . . ,yN )
satisfies
(1.8a)

1

C0
=

π

Nσ

[
1 +

σ

π

(
log
(
2e−3/2σ

)
+

4

N
H(y1, . . . ,yN )

)
+O

(
σ2 log

(σ
2

))]
,

where the discrete energy H(y1, . . . ,yN ), representing both Coulombic and logarith-
mic internanotrap interactions, is

H(y1, . . . ,yN ) ≡ 2π

N∑
j=1

N∑
k=j+1

G(yj ;yk) =

N∑
j=1

N∑
k=j+1

g(|yj − yk|) ,(1.8b)

where g(μ) ≡ 1

μ
+

1

2
log

(
μ

2 + μ

)
.

Since on the interval 0 < μ < 2, g(μ) is a monotone decreasing, positive, and convex
function, the spatial configuration {y1, . . . ,yN} of nanotraps that minimizes H, and
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consequently maximizes C0, will be (roughly) uniformly distributed over the surface
of the target sphere. This discrete optimization problem for points on the sphere is a
generalization of the classical Fekete point problems of [20, 5, 39, 27, 44, 7]. In addi-
tion, as a result of the different Green’s functions involved, this problem is different
from the discrete optimization problem derived in [12] to minimize the average MFPT
for the narrow escape problem. For finite N , in section 4.1 we examine numerically
the effect of both the spatial distribution of the nanotraps and the fragmentation of
the nanotrap set. For the case of a single nanotrap, where H ≡ 0, in section 6 an exact
solution to (1.5) in terms of a dual Legendre series, inspired by [47, 14], is derived to
provide partial verification of (1.8a).

The canonical dimensionless problem (1.5) is equivalent to the well-known bio-
physical problem of analyzing how diffusing ligands bind to cell surface receptors on
a spherical surface of radius R0 (cf. [4, 31]). In this context, ligands are modeled
as point Brownian particles with diffusivity D0 that are trapped upon first contact
with any disk-shaped surface receptor of radius a0. The corresponding steady-state
dimensional ligand concentration u(x) satisfies

Δu = 0 , |x| ≥ R0 ; u ∼ 1− C/|x| as |x| → ∞ ,(1.9a)

u = 0 , x ∈ ∂Ωa , ∂nu = 0 , x ∈ ∂Ωr ,(1.9b)

where the absorbing set ∂Ωa on the sphere consists of N locally circular cell surface
receptor patches of a common radius a0 � 1, while ∂Ωr is the nonbinding (reflecting)
part of the surface of the sphere. In terms of the capacitance C, as defined by
the far-field behavior (1.9a), the flux J of ligands to the surface receptors is J ≡∫
∂Ωa

D0ur

∣∣
r=R0

ds = 4πD0C. When the entire surface is absorbing, then u = 1 −
R0/|x|, so that C = R0, which yields Smoluchowski’s classical result Jsm = 4πD0R0.
When there is only partial coverage by identical disk-shaped receptors on the sphere,
the physically motivated flux-based analysis of Berg and Purcell [4] postulated, for a
spatially uniform arrangement of such receptors, that

(1.10a) Jbp = 4πD0Cbp , Cbp = R0
Na0

Na0 + πR0
,

provided that the receptor surface area coverage f ≡ N
4 (a0/R0)

2 is small. This
effective capacitance Cbp can then be used to homogenize the highly nonuniform
boundary conditions (1.9b) by a uniform Robin conditionD0∂nu+κu = 0 on the entire
surface r = R0. By solving (1.9a) with this Robin condition, we readily identify that
κ = D0C/(R0(R0 − C)), and so using the Berg–Purcell effective capacitance (1.10a)
and eliminating N in terms of f , the leakage κbp is identified as

(1.10b) κbp =

(
D0

R0

)(
4f

πσ

)
, σ ≡ a0

R0
� 1 , f ≡ Nσ2

4
.

More detailed studies [45, 51, 2, 3, 34] and fittings of the leakage parameter κ in
a boundary homogenization procedure for nanotraps on either the sphere or on a
flat plane are discussed in section 4. By taking the limit N 	 1 in our expression
for the capacitance C0 for a uniformly distributed configuration of nanotraps of a
common radius σ, our result in section 4 for the low surface nanotrap coverage limit
f = O(−σ2 log σ) � 1, and when cast in dimensional form, predicts that

κ ∼
(
D0

R0

)(
4f

πσ

)[
1− 8d1

π

√
f +

σ

π
log
(
β
√
f
)
+

2d3σ
2

π
√
f

]−1

, where β ≡ 4e−3/2e4d2 ,

(1.11)
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and σ ≡ (a0/R0) � 1. Here dj for j = 1, . . . , 3 are coefficients in the large N -
expansion of the energy H in (1.8b) for a uniform distribution of nanotraps on the

sphere of the form H = N2

4 − d1N
3/2 + 1

8N logN + d2N + d3N
1/2 + O(logN). The

leading term in (1.11) agrees with the Berg–Purcell result (1.10b), while the 8d1
√
f/π

term theoretically explains one of the parameter fittings in [3, 34]. A further discussion
of this result and a comparison to other results in the literature, notably those in
[2, 3, 34, 51], are discussed in section 4. Finally, in section 7 we briefly summarize our
main results and discuss a few open problems worthy of further study.

2. Asymptotic analysis of the MFPT and the variance. In this section
we calculate the standard deviation of the first passage time and compare it with
the asymptotic result for the MFPT, as given in Principal Result 3.1 of [11]. The
two-term expansion for the MFPT in terms of the capacitance C0 of the target, as
defined by (1.5), is as follows.

Principal Result 2.1 (from [11]). In the limit ε → 0 of small trap radius, the
MFPT w, satisfying (1.1), is given asymptotically in the outer region |x−x0| 	 O(ε)
by

(2.1) w ∼ |Ω|
4πC0Dε

[
1− 4πεC0Gm(x;x0) + 4πεC0Rm(x0) +O(ε2)

]
,

where the Neumann Green’s function Gm and its regular part Rm satisfy (1.3). The
average MFPT τ ∼ |Ω|−1

∫
Ω w dx, based on assuming a uniform distribution of start-

ing points x for the Brownian walk, is given in (1.4).

Next, we use the method of matched asymptotic expansions to calculate the
second moment T, which satisfies (cf. [16])

ΔT = − 2

D
w , x ∈ Ω\Ωε ; ∂nT = 0 , x ∈ ∂Ω ,(2.2a)

T = 0 , x ∈ ∂Ωεa , ∂nT = 0 , x ∈ ∂Ωεr .(2.2b)

Since w = ε−1w0 + w1 + · · · in the outer region, as given in Principal Result 2.1, we
expand T there as

(2.3) T = ε−2
T0 + ε−1

T1 + T2 + · · · ,

where T0 is an unknown constant. From (2.2a), we obtain that Tk for k = 1, 2 satisfies

(2.4) ΔTk = − 2

D
wk−1 , x ∈ Ω\{x0} ; ∂nTk = 0 , x ∈ ∂Ω ,

subject to a singularity condition as x → x0. Here wk for k = 0, 1 can be identified
from (2.1). In the inner region near the sphere, we expand the inner solution T (y) ≡
T(x0 + εy), with y ≡ ε−1(x− x0), as

(2.5) T = ε−2T0 + ε−1T1 + T2 + · · · .

Upon substituting (2.5) into (2.2b) and the PDE of (2.2a), we obtain that Tk for
k = 0, 1 satisfies

(2.6) ΔyTk = 0 , y �∈ Ω0 ; Tk = 0 , y ∈ Γa ; ∂nTk = 0 , y ∈ Γr .
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The matching condition between the inner and outer solutions is that for x → x0 and
|y| → ∞, we have

(2.7) ε−2
T0 + ε−1

T1 + T2 + · · · ∼ ε−2T0 + ε−1T1 + T2 + · · · .

The leading order matching condition is that T0 → T0 as |y| → ∞. From (2.6),
and by comparing with our canonical capacitance problem (1.5) for v(y) and C0, we
conclude that

(2.8) T0 = −C0T0v .

Upon using the far-field behavior of v from (1.5c), we obtain in terms of outer variables
that

(2.9) T0 ∼ T0

(
1− εC0

|x− x0|
− ε2p·(x− x0)

|x− x0|3
+ · · ·

)
as |y| → ∞ .

Then from (2.7) we obtain T1 ∼ −C0T0/|x− x0| as x → x0. This local singularity
behavior is equivalent to a Dirac source term 4πC0T0δ(x−x0) in the equation for T1.
Therefore (2.4) for k = 1 yields that

(2.10) ΔT1 = − 2

D
w0 + 4πC0T0 δ(x− x0) , x ∈ Ω ; ∂nT1 = 0 , x ∈ ∂Ω .

Upon applying the divergence theorem to (2.10) and using w0 = |Ω|/(4πC0D) from
(2.1), we calculate T0 as

(2.11) T0 =
2w0|Ω|
4πC0D

=
|Ω|2

8π2(C0D)2
.

The solution to (2.10) is written in terms of the Neumann Green’s function Gm of
(1.3) as

(2.12) T1(x) = −4πC0T0Gm(x;x0) + T̄1 ,

where T̄1 ≡ |Ω|−1
∫
Ω T1 dx is a constant to be found. We then expand T1 as x → x0

to obtain

(2.13) T1 ∼ − C0T0

|x− x0|
+
[
T̄1 − 4πC0T0Rm(x0)

]
+ o(1) as x → x0 .

Upon matching to the inner solution using (2.7) it follows that T1 satisfies (2.6)
subject to the far-field behavior T1 ∼

[
T̄1 − 4πC0T0Rm(x0)

]
as |y| → ∞, which has

the solution

(2.14) T1 =
[
T̄1 − 4πC0T0Rm(x0)

]
(−C0v) .

By using the far-field behavior (1.5c) for v, the monopole term in T1 together with
the dipole term in T0 in (2.9) leads to the singularity behavior for T2 that

(2.15) T2 ∼ −
C0

[
T̄1 − 4πC0T0Rm(x0)

]
|x− x0|

− T0
p·(x − x0)

|x− x0|3
as x → x0 .
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From this singularity behavior, and together with (2.4) with k = 2, we get

ΔT2 = − 2

D
w1 + 4πC0

[
T̄1 − 4πC0T0Rm(x0)

]
δ(x− x0)− T0 p·∇xδ(x− x0) , x ∈ Ω ;

(2.16)

∂nT2 = 0 , x ∈ ∂Ω .

By applying the divergence theorem on (2.16) and using
∫
Ω
w1 dx = |Ω|2Rm(x0)/D

from (2.1), we obtain

(2.17) T̄1 =
|Ω|2

2πC0D2
Rm(x0) + 4πC0T0Rm(x0) .

By substituting (2.17) into (2.12), and recalling (2.3), we obtain a two-term expansion
for T in in the outer region
(2.18)

T ∼ T0

ε2
+

1

ε

[
−4πC0T0Gm(x;x0) + 4πC0T0Rm(x0) +

|Ω|2
2πC0D2

Rm(x0)

]
+O(1) .

Finally, the variance of the first passage time V in the outer region is V = T−w2,
where T and w are given in (2.18) and (2.1), respectively, while the standard deviation
Σ is Σ = V1/2. This leads to the following main result.

Principal Result 2.2. In the limit ε → 0 of small trap radius, the variance V
and standard deviation Σ = V1/2 of the first passage time is given asymptotically in
the outer region |x− x0| 	 O(ε) by
(2.19)

V ∼ |Ω|2
16π2C2

0D
2ε2

+
|Ω|2

2πC0D2ε
Rm(x0)+O(1) , Σ ∼ |Ω|

4πC0Dε
[1+4πεC0Rm(x0)+O(ε)] ,

where the regular part Rm(x0) of the Green’s function satisfies (1.3).

From (2.19) we conclude that the first two terms in the expansion of the variance
and standard deviation are independent of the starting point for Brownian motion;
only the O(1) term, which we did not calculate, depends on x. Moreover, we conclude
upon comparing (2.19) and (1.4) that the standard deviation of the first passage time
is identical, up to O(1) terms, to the average MFPT τ . This new result indicates that
the average MFPT may not be a reliable estimate of the time for capture, as there is
always a significant spread in the distribution about the mean.

The asymptotic equivalence of the mean and standard deviation of the capture
time as ε → 0 can be related to the long time form of the occupation density. Specif-
ically, the probability p(x, t) that a random walker is free at x ∈ Ω at time t satisfies
(cf. [33, 24, 38, 26])

p(x, t) ∝ φ0(x; ε)e
−Dλ0(ε)t, t → ∞,

where (λ0(ε), φ0(x; ε)) is the principal eigenpair of the Laplacian in Ω \ Ωε. There-
fore, Brownian particles that are not quickly absorbed have exponentially distributed
capture times of equal mean and standard deviation.

To further illustrate this qualitative result between the MFPT and the standard
deviation, suppose that the starting point for Brownian motion x is not far from
x0. Then, since Gm(x;x0) > 0, we have w < τ , so that the MFPT is less than
the average MFPT τ . However, from (2.19), the asymptotic approximation of the
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standard deviation is not reduced when x becomes closer to x0, which presumably
reflects the fact that although the particle may start relatively close to the trap, there
are always some Brownian paths that miss the target and, thereby, avoid a quick
capture.

Finally, we comment on the dependence of Σ on x0. When Ω is a sphere of unit
radius we have from [11] that

(2.20) Rm(x0) =
1

4π (1− |x0|2)
− 1

4π
log
(
1− |x0|2

)
+

|x0|2
4π

− 7

10π
.

We obtain that Rm(x0) is monotone increasing in |x0|, and so the standard deviation
and the average MFPT are minimized, as expected, when the trap is centered at the
origin of the sphere.

3. Determination of the capacitance of the structured target. In this
section we use the method of matched asymptotic expansions to calculate the capac-
itance C0, as defined in (1.5), when Ω0 is the unit sphere, and where the absorbing
boundary set Γa is subdivided into N small patches, referred to here as nanotraps,
each with radius σak, where σ � 1. The centers of these boundary nanotraps are
at yk, where |yk| = 1 for k = 1, . . . , N . In this section, we refer to the small O(σ)
neighborhood near the nanotrap as the “inner” region, while the region away from
the nanotraps where |y| = O(1) is referred to as the “outer” region. This result can
then be used in Principal Results 2.1 and 2.2 to calculate the MFPT and the standard
deviation of the capture times.

In terms of spherical coordinates (r, θ, φ), the Laplacian in (1.5) is

(3.1) Δv ≡ ∂2v

∂r2
+

2

r

∂v

∂r
+

1

r2 sin2 θ

∂2v

∂φ2
+

cot θ

r2
∂v

∂θ
+

1

r2
∂2v

∂θ2
.

In a boundary layer in the vicinity of the nanotrap centered at yk, we introduce the
local coordinate system
(3.2)
z = σ−1(y − yk) , η = σ−1(r − 1) , s1 = σ−1 sin θk(φ− φk) , s2 = σ−1(θ − θk) ,

where η is a rescaled measure of distance to the target and (s1, s2) parameter-
izes the surface of the target for η = 0. The particular form of (s1, s2) is mo-
tivated by the surface distance metric. If y = (sin θ cosφ, sin θ sinφ, cos θ)T and
yk = (sin θk cosφk, sin θk sinφk, cos θk)

T are two points on the sphere, then y → yk

implies that (φ, θ) → (φk, θk) and

|y − yk|2 = 4 sin θ sin θk sin
2

(
φ− φk

2

)
+ 4 sin2

(
θ − θk

2

)
∼ (φ − φk)

2 sin2 θk + (θ − θk)
2 = σ2[s21 + s22].

Therefore (s1, s2) is an approximate surface cartesian coordinate system near each
nanotrap. In the local coordinates (3.2), we define the operator L by L ≡ ∂ηη +
∂s1s1 + ∂s2s2 , and (3.1) becomes

(3.3) Δv ∼ σ−2Lv + σ−1 [−2η(vs1s1 + vs2s2) + cot θk(vs2 − 2s2vs1s1) + 2vη] +O(1) .

As shown in Appendix A, the local behavior of the Green’s function G(y;yk) given
in (1.7c) as y → yk, written in terms of the coordinates (3.2), is

(3.4) G =
1

2π

[
1

σ|z| +
1

2
log
(σ
2

)
+

1

2
log[η + |z|] +O(σ)

]
.



DIFFUSION TO A SMALL STRUCTURED SPHERICAL TARGET 83

Then, using (A.4) of Lemma A.1 of Appendix A, which gives a two-term expansion
for 1/|z| in terms of the local coordinates (s1, s2, ρ), where ρ ≡ (s21 + s22 + η2)1/2, we
obtain that the local behavior of G(y;yk) as y → yk is
(3.5)

G =
1

2π

[
1

σρ
+

1

2
log
(σ
2

)
+

1

2

(
log[η + ρ]− 1

ρ3

(
η(s21 + s22) + s21s2 cot θk

))]
+O(σ) .

In view of (3.5), we will expand the inner solution near the kth nanotrap, in terms of
the inner variables (ρ, s1, s2), as

(3.6) v ∼ w0

σ
+ log

(σ
2

)
w1 + w2 + o(1) .

Further terms in this inner expansion are generated systematically below. Since the
nanotraps have radii O(σ), we anticipate that C0 = O(σ), and so in the outer region
away from the nanotraps, we expect that v ∼ v0/σ, where v0 is a constant. In this
outer region, we expand the solution to (1.5) as

(3.7) v(y) =
v0
σ

+ v1 + σ log
(σ
2

)
v2 + σv3 + · · · ,

where v0 is an unknown constant, and where each vj for j ≥ 1 satisfies

(3.8) Δvj = 0, |y| > 1 ; ∂nvj = 0 , y ∈ ∂Ω0 \ {y1, . . . ,yN} ,

subject to certain asymptotic behaviors as y → yk for k = 1, . . . , N that are to
be determined by matching. For each of these problems, we will show below that
the solution will either be a constant or a superposition of Green’s functions, where
each nanotrap effectively introduces a Coulomb source of a certain strength. Further
terms in the outer expansion are generated below, and we will need to adjust the
outer expansion by certain logarithmic switchback terms (cf. [30]).

Upon substituting (3.6) into (1.5), and using (3.3), the leading-order problem
from the O(σ−2) terms is

Lw0 = 0 , η > 0, −∞ < s1, s2 < ∞ ,(3.9a)

w0 = 0 , η = 0 , s21 + s22 < a2k ; ∂ηw0 = 0 , η = 0 , s21 + s22 ≥ a2k ,

(3.9b)

subject to the matching condition that w0 ∼ v0 as ρ → ∞. The solution to (3.9) is

(3.10) w0 = v0 (1− wc) ,

where wc is the solution to the electrified disk problem defined on the tangent plane
to the sphere at y = yk by

Lwc = 0 , η > 0 , −∞ < s1, s2 < ∞ ; wc → 0 as ρ ≡
√
s21 + s22 + η2 → ∞ ,

(3.11a)

wc = 1 , η = 0 , s21 + s22 < a2k ; ∂ηwc = 0 , η = 0 , s21 + s22 ≥ a2k .

(3.11b)

The exact solution to this problem (see page 38 of [19]) is
(3.11c)

wc =
2

π
sin−1

(ak
L

)
, L ≡ 1

2

[√
[(s21 + s22)

1
2 + ak]2 + η2+

√
[(s21 + s22)

1
2 − ak]2 + η2

]
.
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In terms of the capacitance ck = 2ak/π of the kth nanotrap, we readily obtain the
far-field behavior

(3.11d) wc ∼ ck

(
1

ρ
+

π2c2k
24

(
1

ρ3
− 3η2

ρ5

)
+ · · ·

)
as ρ → ∞ ; ck ≡ 2ak

π
.

Then, by using the far-field behavior (3.11d) together with the leading order behavior
ρ ∼ σ−1|y − yk|, we obtain that the near-field behavior as y → yk of the outer
expansion σ−1v0 + v1 + · · · in (3.7) must agree with the far-field behavior of the
inner expansion σ−1w0 ∼ σ−1v0(1 − σck/|y− yk|). In this way, we obtain that v1
satisfies (3.8), subject to v1 ∼ −v0ck/|y − yk| as y → yk for k = 1, . . . , N . In terms
of G(y;y0) satisfying (1.7), the solution for v1 is

(3.12) v1 = −2πv0

N∑
j=1

cjG(y;yj) + χ1 ,

where χ1 is a constant to be determined. Now for |y| 	 1, we have from Appendix A
that G(y;yj) ∼ (4π|y|)−1. Therefore, from the prescribed flux condition defined by
(1.5b), we determine the unknown constant v0 as

(3.13) v0 =
−2∑N
j=1 cj

=
−2

Nc̄
, where c̄ ≡ 1

N

N∑
j=1

cj .

To proceed to higher order, we expand v1 in (3.12) as y → yk, by using the local
behavior (3.5), to obtain that

v0
σ

+ v1 + · · · ∼ v0
σ

(
1− ck

ρ

)
− v0ck

[
1

2
log
(σ
2

)
+

1

2
log[η + ρ]

(3.14a)

− 1

2ρ3
(
η(s21 + s22) + s21s2 cot θk

)]
+ χ1 +Bk ,

where we have defined the constant Bk by

(3.14b) Bk = −2πv0

N∑
j=1
j �=k

cjG(yk;yj) , k = 1, . . . , N .

This shows that the next term in the inner expansion is O(log σ), as written in (3.6).
To shed light on how the particular spatial arrangement of nanotraps affects capture,
we require a high order expansion which incorporates the interaction terms Bk. In
order to obtain a well-posed problem for v2, where we have a degree of freedom
to impose the zero flux condition limR→∞

∫
∂ΩR

∂nv2 ds = 0, we must incorporate

a constant logarithmic switchback term (cf. [30]) of order O(log σ) into the outer
expansion. This is equivalent to decomposing the unknown χ1 in (3.12) as

(3.15) χ1 = χ10

(
log

σ

2

)
+ χ11 .

As such, with the inclusion of this switchback term, our modified outer expansion
becomes

(3.16) v(y) =
v0
σ

+ χ10 log
(σ
2

)
+ v1 + σ log

(σ
2

)
v2 + σv3 + · · · ,
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where

(3.17) v1 = −2πv0

N∑
j=1

cjG(y;yj) + χ11 .

Upon using (3.15) for χ1 in (3.14a) and comparing this with (3.6), we obtain using
(3.3) that w1 satisfies (3.9) subject to the far-field behavior that w1 ∼ (χ10 − ckv0

2 ) as
ρ → ∞. As such, the exact solution for w1 is

(3.18) w1 =
(
χ10 −

ckv0
2

)
(1− wc) ,

where wc is the solution (3.11c) to the electrified disk problem (3.11). By using the
far-field behavior (3.11d), we then match the monopole behavior for w1 to the term v2
in the outer expansion (3.16). In this way, we find that v2 satisfies (3.8) subject to the
singularity behavior v2 ∼ −ck (χ10 − ckv0/2) /|y− yk| as y → yk for k = 1, . . . , N .
In terms of a further unknown constant χ2, the solution for v2 is

(3.19) v2 = −2π

N∑
j=1

ck

(
χ10 −

ckv0
2

)
G(y;yj) + χ2 .

Then, by imposing the no-flux condition limR→∞
∫
∂ΩR

∂nv2 ds = 0, we get
∑N

j=1 cj(χ10

− cjv0
2 ) = 0, which yields that

(3.20) χ10 =
v0
2Nc̄

N∑
k=1

c2k = − 1

(Nc̄)2

N∑
k=1

c2k .

Then, similarly to the discussion above regarding v1, we must decompose χ2 in (3.19)
as

(3.21) χ2 = χ20 log
(σ
2

)
+ χ21 ,

which effectively introduces a further constant switchback term σ [log(σ/2)]
2
χ20 into

the outer expansion, yielding

(3.22) v(y) =
v0
σ

+ χ10 log
(σ
2

)
+ v1 + σ

[
log
(σ
2

)]2
χ20 + σ log

(σ
2

)
v2 + σv3 + · · · ,

where v2 is given by

(3.23) v2 = −2π

N∑
j=1

ck

(
χ10 −

ckv0
2

)
G(y;yj) + χ21 .

We will calculate χ20 explicitly below, while the term χ21 will be used only to provide
our error estimate for C0.

The intricate step in the analysis is to determine χ11 in (3.17) which incorporates
the self-interaction terms Bk given in (3.14b). This is done by equating the far-field
behavior of w2 as ρ → ∞ in the inner expansion (3.6) with the O(1) terms in the
near-field behavior (3.14a) for v1. This yields that
(3.24a)

w2 ∼ −v0ck

[
1

2
log[η + ρ]− 1

2ρ3

(
η(s21 + s22) + s21s2 cot θk

)]
+χ11+Bk as ρ → ∞ .
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Moreover, from substituting the inner expansion (3.6) into (3.3), and then using
w0 = v0(1−wc) to rewrite the inhomogeneous terms in the resulting PDE, we obtain
that w2 satisfies the Poisson-type problem

Lw2 = 2v0(wcη + ηwcηη) + v0 cot θk(wcs2 − 2s2wcs1s1) , η > 0 , −∞ < s1, s2 < ∞ ,
(3.24b)

w2 = 0 , η = 0 , s21 + s22 < a2k ; ∂ηw2 = 0 , η = 0 , s21 + s22 ≥ a2k ,

(3.24c)

subject to the far-field behavior (3.24a) for w2 as ρ → ∞.
The analysis for w2 is very similar to that done in [12] in the context of the

narrow escape problem, with the exception that η has a different sign here since we
are solving exterior to the target sphere, rather than interior to a confining sphere. In
Appendix B we show that the homogeneous part of the solution for w2 is determined
by the O(1) terms in the far-field behavior (3.24a), while the remaining terms match
particular solutions arising from certain inhomogeneous terms on the right-hand side
of (3.24b). As summarized in Appendix B, the appropriate decomposition for w2 is

(3.25) w2 = (χ11 +Bk)(1 − wc) + v0w2o + v0w2e ,

where wc satisfies (3.11). Here w2o is the solution to

Lw2o = cot θk(wcs2 − 2s2wcs1s1) , η > 0, −∞ < s1, s2 < ∞ ,(3.26a)

w2o = 0 , η = 0 , s21 + s22 < a2k ; ∂ηw2o = 0 , η = 0 , s21 + s22 ≥ a2k ,

(3.26b)

w2o ∼ ck
2ρ3

(
s21s2 cot θk

)
as ρ → ∞ ,(3.26c)

while w2e satisfies

Lw2e = 2(wcη + ηwcηη) , η > 0 , −∞ < s1, s2 < ∞ ,(3.27a)

w2e = 0 , η = 0 , s21 + s22 < a2k ; ∂ηw2e = 0 , η = 0 , s21 + s22 ≥ a2k ,

(3.27b)

w2e ∼ −ck
2
log[η + ρ] +

ck
2ρ3

η(s21 + s22) as ρ → ∞ .(3.27c)

The key issue in the analysis of w2 is to identify which terms in the decomposition
(3.25) can generate monopole terms of the form a/ρ in the far-field behavior as ρ → ∞.
Such terms will contribute to the determination of χ11 from a solvability condition
applied to the problem for the outer correction v3 in (3.16). Clearly, the first term
(χ11 +Bk) (1 − wc) in (3.25) yields a monopole term from the far-field behavior of
wc given in (3.11d). However, by solving the problems for w2e and w2o exactly as in
Lemmas B.1 and B.2 of Appendix B, respectively, we find that of these two terms only
w2e yields a monopole term, and it has the far-field behavior (see (B.4) of Appendix B)

w2e = −ck
2
log[η + ρ] +

ck
2ρ3

η(s21 + s22) +
ckbk
ρ

+O(ρ−2) as ρ → ∞ ,

where bk =
ck
2

[
log(4ak)−

3

2

]
.(3.28)



DIFFUSION TO A SMALL STRUCTURED SPHERICAL TARGET 87

In this way, the far-field behavior of w2 from (3.25) is

w2 ∼ −v0ck

[
1

2
log[η+ρ]− 1

2ρ3

(
η(s21+s22)+s21s2 cot θk

)]
+χ11+Bk−

ck(χ11+Bk−v0bk)

ρ
,

(3.29)

as ρ → ∞ .

Since ρ ∼ σ−1|y−yk|, the monopole term for w2 generates a singularity behavior for
the correction term v3 in the outer expansion (3.16). We find that v3 satisfies (3.8)
subject to the singularity behavior v3 ∼ −ck(χ11 +Bk − v0bk)/|y − yk| as y → yk for
k = 1, . . . , N . By imposing the no far-field flux condition limR→∞

∫
∂ΩR

∂nv3 ds = 0,
we determine χ11 as

(3.30) χ11 =
1

Nc̄

N∑
k=1

ck(v0bk −Bk) ,

where Bk is defined in (3.14b). Upon substituting (3.14b) into (3.30), we determine
χ11 as

χ11 =
v0
Nc̄

[
N∑

k=1

ckbk + 2F(y1, . . . ,yN )

]
,(3.31)

where F(y1, . . . ,yN ) ≡ 2π

N∑
j=1

N∑
k=j+1

cjckG(yj ;yk) .

Here we have used the reciprocity relation G(yj ;yk) = G(yk;yj) of the Green’s
function (1.7c).

Finally, similarly to the determination of χ10, we can calculate the constant χ20 in
(3.21). This calculation, not performed for the narrow escape problem in [12], requires
the introduction of further correction terms in the inner and outer expansions. The
modified outer expansion is now given by

v(y) =
v0
σ

+ χ10 log
(σ
2

)
+ v1 + σ

[
log
(σ
2

)]2
χ20 + σ log

(σ
2

)
v2(3.32)

+ σv3 + σ2
[
log
(σ
2

)]2
v4 + · · · ,

while the modified form of the inner expansion is

(3.33) v ∼ w0

σ
+ log

(σ
2

)
w1 + w2 + σ

[
log
(σ
2

)]2
w3 + · · · .

The O(log σ) local behavior of v2, together with the switchback term in (3.32) propor-
tional to χ20, yields that w3 must have the far-field behaviorw3 ∼ χ20− ck

2

(
χ10 − v0ck

2

)
as ρ → ∞. Then, upon substituting (3.33) into (3.1), we obtain that Lw3 = 0, so
that

(3.34) w3 ≡
[
χ20 −

ck
2

(
χ10 −

v0ck
2

)]
(1− wc) .

By using wc ∼ ck/ρ as ρ → ∞, the far-field behavior of w3 then yields a singularity
condition for the outer correction v4 in (3.32). We find that v4 satisfies (3.8), subject
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to the singularity condition

v4 ∼ −
ck
[
χ20 − ck

2

(
χ10 − v0ck

2

)]
|y − yk|

as y → yk , k = 1 , . . . , N .(3.35)

Then, by imposing the no far-field flux condition limR→∞
∫
∂ΩR

∂nv4 ds = 0, we get

2χ20

∑N
k=1 ck =

∑N
k=1

(
χ10 − v0ck

2

)
c2k. By using (3.20) for χ10, we determine χ20 as

(3.36) χ20 =
v0
4Nc̄

⎛
⎜⎝
(∑N

k=1 c
2
k

)2
Nc̄

−
N∑

k=1

c3k

⎞
⎟⎠ .

Finally, to identify the capacitance C0 we let |y| → ∞ in (3.32) and compare the
resulting expression with (1.5c). Since limR→∞

∫
∂ΩR

∂nvj ds = −4πδj,1, where δj,1 is
the Kronecker symbol, we readily identify that

− 1

C0
=

v0
σ

+ χ10 log
(σ
2

)
+ χ11 + σ

[
log
(σ
2

)]2
χ20 +O

(
σ log

(σ
2

))
.

Upon using our previous results for v0, χ10, χ11, and χ20 from (3.13), (3.20), (3.31),
and (3.36), we obtain our main result for the capacitance C0 of the structured spherical
target.

Principal Result 3.1. In the limit σ → 0, the capacitance C0, defined in (1.5),
for the target unit sphere that contains N nonoverlapping locally circular nanotraps
of radii σak for k = 1, . . . , N , centered at yk for k = 1, . . . , N on its boundary, is
given asymptotically by

1

C0
=

2

Nc̄σ

[
1 + σ log

(σ
2

) ∑N
j=1 c

2
j

2Nc̄
+

σ

Nc̄

(
N∑

k=1

ckbk + 2F(y1, . . . ,yN )

)
(3.37a)

+ σ2
[
log
(σ
2

)]2 ζ

4Nc̄
+O

(
σ2 log

(σ
2

))]
.

Here ck = 2ak/π is the capacitance of the kth circular nanotrap, while bk, ζ, and
F(y1, . . . ,yN ) are defined by

bk ≡ ck
2

(
log(4ak)−

3

2

)
, ζ ≡

(∑N
k=1 c

2
k

)2
Nc̄

−
N∑

k=1

c3k ,(3.37b)

F(y1, . . . ,yN ) ≡ 2π

N∑
j=1

N∑
k=j+1

cjckG(yj ;yk) ,

where the Green’s interaction term G(yj ;yk) can be calculated using (1.7c).

As a remark, we can use the more refined far-field behavior of G(y;y0) given
in (A.8) to calculate the leading order behavior in σ of the dipole term p in (1.5c).
However, since this term was not needed in section 2 we forgo this calculation.

In (3.37a), the discrete energy F(y1, . . . ,yN ) depends on the spatial distribution
of the nanotraps and contributes to C0 a weighted sum of the Green’s interaction
term G(yj ;yk). As two nanotraps become closer, the term G(yj ;yk) increases, which
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then has the effect of decreasing C0. We remark that the term ζ in (3.37a) vanishes
when the nanotraps have a common radii, and so effectively it measures the spread
in the distribution of the sizes of the nanotraps.

For the special case where ak = 1 for k = 1, . . . , N , in which the nanotraps have a
common radius σ, we simply set ck = 2/π and ζ = 0 in (3.37). Then (3.37a) reduces
to
(3.38a)
1

C0
=

π

Nσ

[
1 +

σ

π
log
(σ
2

)
+

σ

π

(
log 4− 3

2
+

4

N
H(y1, . . . ,yN )

)
+O

(
σ2 log

(σ
2

))]
,

where the interaction functionH(y1, . . . ,yN ) defined by F(y1, . . . ,yN ) = c2kH(y1, . . . ,
yN ) is
(3.38b)

H(y1, . . . ,yN ) =

N∑
j=1

N∑
k=j+1

[
1

|yj − yk|
+

1

2
log |yj − yk| −

1

2
log(2 + |yj − yk|)

]
.

For the special case N = 1, the expression (3.38a) simplifies to

(3.39)
1

C0
=

π

σ

[
1 +

σ

π
log
(σ
2

)
+

σ

π

(
log 4− 3

2

)
+O

(
σ2 log

(σ
2

))]
.

As a partial confirmation of our results, in section 6 we derive a high order asymptotic
expansion of an exact solution for the single nanotrap case N = 1, which yields that
(3.40)
1

C0
=

π

σ

[
1 +

σ

π

(
log σ − 3

2
+ log 2

)
− σ2

π2

(
π2 + 21

36

)
+O(σ3 log σ)

]
as σ → 0.

The expression in Principal Result 3.1 and (3.38) are two of the main results of this
paper. In section 4 we use (3.38) to derive a new effective Robin boundary condition
on the sphere that corresponds to the homogenized limit N = O(− log σ) 	 1, where
the nanotraps are uniformly distributed over the surface of the sphere. In section 4.1
we use (3.38) to numerically explore the effect on C0 of both the fragmentation of the
nanotrap set and of the spatial distribution of the nanotraps on the boundary of the
target sphere.

To validate the asymptotic formula (3.38) for the capacitance of the spherical
target with multiple nanotraps and (3.39) for a single nanotrap, we compare these
asymptotic results with full numerical solutions of the exterior problem (1.5), as ob-
tained by means of a spectral boundary element method (cf. section 5).

4. The effective Robin boundary condition: A scaling law for large N .
In this section we use our main result (3.38) to derive a scaling law for 1/C0 for the case
where N = O(− log σ) 	 1 nanotraps are equally distributed over the surface of the
sphere. In this low trap surface area fraction limit, we will derive from first principles
a “homogenized” effective boundary condition of the form ∂nv + κv = 0 to be used
on ∂Ω0, for some κ to be determined. Our result is then compared with previous
results in the literature. We remark that in the context of the nuclear-pore structure,
the nuclear radius is roughly 4 microns, and there are estimated to be approximately
N = 2000 nanotraps, each of estimated radius 25 nanometers (cf. [29, 41]). This
yields that σ = 6.25 × 10−3, and a surface area fraction f of f = Nσ2/4 ≈ 0.0195,
providing only a small 2% coverage of the boundary of the nucleus by nanotraps.
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Fig. 2. Left: Plot of the interaction energy g(μ) of (4.1a). Right: The discrete energy H of
(4.1) for equally spaced Fibonacci points (diamonds) and the homogenized result (solid line) given
in (4.4).

We first consider some properties of the discrete energy in (3.38b). Since 0 <
|yj − yk| ≤ 2 for j �= k, we have
(4.1a)

H(y1, . . . ,yN ) =

N∑
j=1

N∑
k=j+1

g(|yj−yk|) , where g(μ) ≡ 1

μ
+
1

2
log

(
μ

2 + μ

)
, 0 < μ ≤ 2 ,

where g(μ) on 0 < μ < 2, with g(μ) → +∞ as μ → 0, satisfies

(4.1b) g′(μ) = − 2

μ2(2 + μ)
< 0 , g′′(μ) =

2(3μ+ 4)

μ3(2 + μ)2
> 0 .

Since g(2) > 0, we conclude that g(μ) is a positive, monotone decreasing, and convex
function on 0 < μ ≤ 2 (see Figure 2(a)). This indicates that the optimal configu-
ration {y1, . . . ,yN} of nanotraps that minimizes H(y1, . . . ,yN ) should be, in some
sense, “uniformly distributed” over the sphere, in order that the nanotraps be as far
apart as possible. From (3.38a), it follows that the capacitance C0 is maximized,
and the corresponding average MFPT from (1.4) minimized, at the specific nanotrap
configuration {y1, . . . ,yN} that globally minimizes the discrete energy in (4.1a).

Since we anticipate that the optimal nanotrap configuration will be uniformly
spaced over the sphere, we seek a scaling law for H as N → ∞ for such a uniformly
distributed arrangement. This scaling law is readily derived using the mean-field
approximation method of [20] and [5]. Since a full discussion of this method was also
given in [12] (see also [13]), we only give the main results here. For this scaling law,
it is convenient to decompose H into three terms as

(4.2a) H(y1, . . . ,yN ) = H1 −H2 +H3 ,

where

H1 ≡
N∑
j=1

N∑
k=j+1

1

|yj − yk|
, H2 ≡ −1

2

N∑
j=1

N∑
k=j+1

log |yj − yk| ,

(4.2b)

H3 ≡ −1

2

N∑
j=1

N∑
k=j+1

log (2 + |yj − yk|) .
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The expression in (4.2) differs from that for the narrow escape problem [12] by the
sign of the middle term in (4.2a), so that, in contrast to [12], H is no longer the sum
of three convex energies. We remark that the classic discrete variational problems of
minimizing either the Coulomb energy H1 or the logarithmic energy H2 on the unit
sphere have a long history in approximation theory (see [20, 5, 39, 27, 44, 7]). For
these energies, the optimal configurations for large N are hexagonal patterns, with
some defects consisting of pentagonal faces that are needed to tessellate the sphere.

For a uniform distribution of points on the sphere, we have for large N that
(cf. [12])

H1 =
1

2
N2 − 1

2
N3/2 +

1

12
N1/2 + o(1) ,(4.3a)

H2 =
N2

8
(1− log 4)− 1

8
N logN − 1

8
N (1− log 4) +O(logN) ,(4.3b)

H3 = −N2

8
(1 + log 4) +

log 2

4
N +

N1/2

6
+O(1) ,(4.3c)

which from (4.2a) yields the following formal scaling law for uniformly distributed
nanotraps as N → ∞:

(4.4) H =
N2

4
− 1

2
N3/2 +

1

8
N logN +

N

8
+

N1/2

4
+O(logN) .

However, since this mean-field approximation completely disregards the details of the
spatial distribution of points on the sphere, it does not provide a reliable scaling
law for the true globally minimum energy configuration. The highest powers of N
obtained by this approximation are presumably theoretically correct in analogy with
previous rigorous results for the classical Coulomb H1 or logarithmic H2 energies (see
[27] and [39]). However, the coefficients of the lower order terms should depend on
the details of the optimal nanotrap arrangement. In particular, from a numerical
computation of N ≤ 200 particles, in [39] it was shown that the optimal energy for
H1 on the sphere can be well fitted with

(4.5) H1min ≈ N2

2
− 0.55230N3/2 + 0.0689N1/2 .

As emphasized in [20], the coefficient of N3/2 should be essentially independent of
whether the points are arranged on a sphere or on a flat plane. Therefore, neglecting
the minor effect due to defects in the hexagonal point pattern on the sphere, the
coefficient of N3/2 should be very closely approximated by that for a hexagonal ar-
rangement of points on the flat plane. Regarding the optimality of H2, it was proved
in [27] that the coefficients of N2 and the N logN in the formal scaling law hold for
the optimal H2, and it was conjectured in [39] that the next term is proportional to
N . This has been proved recently in Theorem 1.2 of [44].

Based on these qualitative remarks, and in the absence of any rigorous results for
H, we postulate in terms of some unknown coefficients d1, d2, and d3 that the optimal
energy Hmin for N → ∞ has the form

(4.6) Hmin =
N2

4
− d1N

3/2 +
1

8
N logN + d2N + d3N

1/2 +O(logN)

for some d1, d2, and d3 with d1 ≈ 0.55230. If we simply assume a uniform distribution
of the centers of the nanotraps on the sphere, we have from (4.4) that d1 = 1/2,
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d2 = 1/8, and d3 = 1/4. A comparison of (4.6) with the discrete energy in (4.1a) is
shown in Figure 2(b).

Upon substituting (4.6) into (3.38a) we obtain that

(4.7)
1

C0
∼ π

Nσ
+

1

N
log
(
2e−3/2σ

)
+ 1− 4d1√

N
+

1

2N
log
(
Ne8d2

)
+

4d3
N3/2

.

In order to preserve the asymptotic ordering consistent with our derivation of (3.38),
we need to assume that N ≤ O(− log σ), so that, at worst, the second and third terms
on the right-hand side of (4.7) are of comparable order. With this assumption, (4.7)
can be written as

(4.8)
1

C0
∼ π

Nσ
+ 1 +

log
(
2e−3/2e4d2σN1/2

)
N

− 4d1√
N

+
4d3
N3/2

.

To obtain the final form of our scaling law, we introduce the surface area fraction
of traps f , defined by f = πNσ2/(4π) = Nσ2/4. Upon eliminating N in (4.8), we
obtain our desired scaling law for C0 = C0(f, σ),

(4.9)
1

C0
∼ 1 +

πσ

4f

(
1− 8d1

π

√
f +

σ

π
log
(
β
√
f
)
+

2d3σ
2

π
√
f

)
,

where β ≡ 4e−3/2e4d2 , which is asymptotically valid, provided that f = O(−σ2 log σ).
Finally, to derive our effective homogenized Robin boundary condition, we introduce
vh satisfying
(4.10)

Δvh = 0 , |y| > 1 ; ∂nvh + κvh = 0 , |y| = 1 ; vh(y) ∼
1

|y| −
1

Ch
as |y| → ∞ ,

where we replace Ch with C0 in (4.9). The exact vh(y) = |y|−1 − 1 − κ−1 yields
κ = Ch/(1− Ch), so that
(4.11)

κ ∼ 4f

πσ

[
1− 8d1

π

√
f +

σ

π
log
(
β
√
f
)
+

2d3σ
2

π
√
f

]−1

, where β ≡ 4e−3/2e4d2 ,

provided that the nanotrap surface fraction satisfies f = O(−σ2 log σ). In our main
scaling law results (4.9) and (4.11), the coefficients di for i = 1, 2, 3, as defined in
the energy expansion (4.6), can correspond either to those in the formal scaling law
(4.4) for a uniform arrangement of points or to those from the true globally minimal
energy for H. We importantly remark, as discussed following (4.5) above, that the
8d1

√
f/π term in (4.11) is closely associated with internanotrap interactions for a

uniform planar arrangement of nanotraps on a flat surface, while the other correction
terms in (4.11) are intrinsically due to curvature effects of the sphere.

We now compare our scaling law for κ in (4.11) with some other results in the lit-
erature [4, 3, 34, 51] derived from either physical considerations or parameter fittings.
In dimensionless form, the Berg–Purcell result (cf. [4]) in (1.10) is

1

C0bp
= 1 +

π

Nσ
= 1 +

πσ

4f
, κbp =

Nσ

π
=

4f

πσ
,(4.12)

and so agrees with the leading terms in our results (4.9) and (4.11). We conclude
that the Berg–Purcell result (1.10) holds in the small nanotrap surface fraction limit



DIFFUSION TO A SMALL STRUCTURED SPHERICAL TARGET 93

f = O(−σ2 log σ) � 1. In [51], the Berg–Purcell result (4.12) was modified based
on physical considerations so as to explicitly account for the reduction of the surface
area due to nanotraps, so that

(4.13) κzw =
4f

πσ(1 − f)
.

However, as seen by comparing (4.13) with (4.11), the small f correction of 1/(1− f) ≈
1 + f + · · · in (4.13) is subdominant to the more significant effect of intertrap inter-
actions captured by the correction terms in (4.11). For a periodic arrangement of
nanotraps on the surface of an infinite planar boundary, in [3, 34] the dimensionless
leakage κ for the corresponding half-space version of (1.5) was closely fitted to full
numerical results by

(4.14) κm =
4f

πσ(1 − f)2

(
1 + A

√
f −Bf2

)
.

For a hexagonal array of nanotraps, the coefficients A and B were estimated in [2]
from stochastic simulations as A ≈ 1.37 and B ≈ 1.259 in [3], and more accurately
from a PDE-based finite-difference numerical method as A ≈ 1.49 and B ≈ 0.92 in
[34]. To our knowledge there has been no such detailed parameter fittings of κ for
nanotraps on the sphere.

To compare (4.14) for planar nanotraps with our result (4.11) for nanotraps on
the sphere, we let f � 1 in (4.14) and (4.11) and neglect the logarithmic terms in
(4.11) due to the spherical surface. We get κm ≈ 4f/(πσ)(1 + A

√
f); however, using

the binomial approximation, our result (4.11) yields κ ≈ 4f/(πσ)
(
1 + 8d1

√
f/π
)
. If

we use the value d1 ≈ 0.55230 for the optimal hexagonal-type pattern on the sphere,
we calculate 8d1/π ≈ 1.41, which is remarkably close to the value A predicted in
[3] and [34] for (4.14). The minor difference in the predicted value is due to either
the minor defects of the hexagonal pattern on the sphere or small numerical errors
involved with either fitting the optimal discrete energy or the simulations in [3] and
[34]. In any event, our expression (4.11) provides a “first principles” derivation of the
effective leakage for the sphere, where the only parameters are associated with the
large N asymptotics of the discrete energy H.

4.1. The effect of trap locations and trap fragmentation on the capac-
itance. In this section we investigate the effect of nanotrap fragmentation on the
capacitance of the spherical target under the assumption that the total absorbing
surface fraction f is fixed and divided among N identical nanotraps traps, of common
radius σ = 2

√
f/N . To generate roughly equidistant points distributed on the sphere,

we use the spiral Fibonacci points (cf. [44, 21, 49] and Appendix C) for different values
of N to generate the centers of the locally circular nanotraps. We avoid comparisons
using random uniform nanotrap centers since configurations with a finite radius σ will
almost certainly generate overlapping patches for large enough N , thus violating the
assumptions leading to (3.38).

Example 1 (fragmentation into N equally spaced nanotraps). Here we consider
N identical nanotraps of common radius σ = 2

√
f/N spaced equally on the surface of

the entire sphere (see Figure 3(b)) for absorbing fractions f = 0.02, 0.05, 0.1, 0.15. In
Figure 3(a) the capacitance C−1

0 is seen to decrease monotonically asN increases. The
limiting value of C−1

0 = 1 corresponds to an all-absorbing spherical target. We observe
that fragmentation of the absorbing set greatly increases the capture rate. However,
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(b) N = 801 nanotraps equally dis-
tributed on the unit sphere.

Fig. 3. (a) Fragmentation of the absorbing fraction into N identical and equally spaced nano-
traps. From top to bottom the curves correspond to the absorbing fractions f = 0.02, 0.05, 0.1, 0.15.
As a confirmation of the homogenized formula for the numbers N = 2000, f = 0.02 (cf. [29, 41]),
we calculate from (3.38) that C−1

0 = 1.1985, which agrees well with C−1
h = 1+κ−1 ≈ 1.2028 arising

from the homogenized formula (4.11). (b) A sphere with an equispaced covering of N = 801 points
from a Fibonacci lattice (see Appendix C).
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Fig. 4. N = 20 identical and equally spaced nanotraps (centers shown only) in the polar region
θ ∈ (0, π

3
) with total cumulative absorbing fraction f = 0.05. The shaded region represents a single

nanotrap whose area is equivalent to the 20 smaller nanotraps.

once N is already large, there is only a very marginal increase in C0 obtained from
increasing N further.

Example 2 (clustering near the north pole). Here we compare the capacitance of
a single nanotrap after fragmentation into N = 20 identical nanotraps of common
radius σ = 2

√
f/N for f = 0.05. The nanotraps are equally spaced and clustered in

the polar region of the sphere θ ∈ (0, π/3). In Figure 4 the shaded region represents
the absorbing area as a single nanotrap. Using formula (3.38), we calculate that

(4.15)
1

C0
= 5.413 (single trap) ,

1

C0
= 2.788 (20 fragmented nanotraps).

Hence the subdividing of a single nanotrap into 20 smaller nanotraps of equivalent
cumulative area roughly halves the capacitance and, consequently, the mean capture



DIFFUSION TO A SMALL STRUCTURED SPHERICAL TARGET 95

Table 1

Comparison of leakage parameter in Robin condition as predicted by full discrete energy (second
column) κ0 = [−1 + 1/C0]

−1, where C0 is computed from (3.38a), the scaling law κ of (4.11) (third

column), and the truncated scaling law (last column) κt ∼ 4f
πσ

[1 − 8d1
π

√
f ]−1 with d1 = 0.5. The

nanotrap coverage is f = 0.02, and the nanotrap radius σ is σ = 2
√

f/N . The centers of the
nanotraps are given by the spiral Fibonacci points (see Appendix C).

N κ0 κ κt

10 0.36817 0.36303 0.34723
20 0.50909 0.50784 0.49105
40 0.71202 0.71190 0.69446
80 1.0108 1.0000 0.98211
160 1.4275 1.4071 1.3889

time to the spherical target from (1.4).

Example 3 (effects of curvature on homogenized scaling law). Here we compare
our scaling law for κ in (4.11), in which we use the values d1 = 1/2, d2 = 1/8, and

d3 = 1/4, with the corresponding result κ0 = [−1 + 1/C0]
−1

obtained by computing
1/C0 from the discrete energy in (3.38a) for a given configuration of centers of the
nanotraps. In our comparison, we show the results obtained when using the truncated

scaling law κt ∼ 4f
πσ

[
1− 8d1

π

√
f
]−1

, which neglects the effect of the curvature of the
sphere. The results are shown in Table 1 for different N while maintaining f = 0.02,
i.e., a 2% nanotrap coverage of the sphere. We observe that even at N = 10, 20, our
scaling law accurately predicts κ0, and that the effect of curvature at smaller values
of N is more important than at higher values of N , as expected.

5. Numerical solutions and validation. In this section we validate the asymp-
totic formulas (3.38) and (3.40) by comparing to results from a spectral boundary
element solution of the exterior mixed Neumann–Dirichlet boundary value problem
(1.5). The numerical problem is formulated as a linear integral equation, specifically
a Neumann-to-Dirichlet map on the set of nanotraps, Γa. This approach relates the
known surface potential, u|∂Ω0 = p(y), to the surface flux, ∂nu|∂Ω0 = −∂ru|∂Ω0 =
q(y), which is unknown on Γa and vanishes on Γr. The exact solution to the Neumann
problem is known in terms of the surface Green’s function (1.7),

u(y) =

∫
x∈Ω0

G(y;x)q(x) dS, y ∈ R
3 \ Ω0.

This formulation simplifies considerably by noting that the surface flux, q(x), is non-
zero only on the nanotraps, Γa, and by restricting our interest to the surface of the
sphere where u(y) = p(y). This yields the linear integral equation

(5.1) p(y) = A [q(x)] ≡
∫
x∈Γa

g (|x− y|) q(x) dS, y ∈ Ω0 ,

where the kernel of the integral operator is defined by the Green’s function restricted
to the sphere,

G(y;x) =
1

2π
g (|x− y|) for x,y ∈ Ω0, g(μ) ≡ 1

μ
+

1

2
log

(
μ

2 + μ

)
,

as defined in (1.8b). Equation (5.1) is solved pseudospectrally with a judicious choice
of basis of functions for the surface potential, p(y), and the surface flux, q(y), within



96 A. E. LINDSAY, A. J. BERNOFF, AND M. J. WARD

the nanotraps Γa. This choice, based on Zernike polynomials [36], captures properties
of the exact solution for a single absorbing circular trap on a half plane (3.11) (cf. [19]),
particularly singularities in the flux along ∂Γa, a notorious feature of mixed Neumann–
Dirichlet boundary value problems [48, 17].

The method is effective and accurate for small, widely separated nanotraps, which
is the relevant asymptotic and biological limit. Accuracy is degraded if trap bound-
aries are nearly touching. Further details of this method, refinement studies, and
quantification of the errors will be described in a companion paper [6]. Below we
focus on numerically validating the single and multiple nanotrap asymptotic formulae
derived previously.
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(a) Rescaled capacitance C0/(σ/π) against
trap radius σ.
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Fig. 5. Comparison of asymptotic predictions and full numerics for a single trap of radius σ.
(a) Three-term (dotted line) expansion (3.39), four-term (dashed line) expansion (3.40), full nu-
merics (solid line), and Burg–Purcell approximation (4.12) (dot-dashed line). (b) Relative errors of
asymptotic approximations for the capacitance as σ → 0. Solid line is the leading order term with
three-term (thin dotted line) and four-term (dashed line) expansions. The two thick dotted lines are
of slope 2 (upper) and 3 (lower) indicating the order of the error in the expansion. Numerical error
is seen to arise as the relative error approaches 10−8.

5.1. Single nanotrap. For the single trap case, we verify the accuracy of the
single trap asymptotics (3.39) obtained from the matched asymptotic approach and
also from the exact approach (3.40) as σ → 0. The results for the rescaled capacitance
in the single patch case are shown in Figure 5(a) and demonstrate that the asymptotic
formulae (3.39) and (3.40) are quite accurate, even when the trap radius becomesO(1).
The dot-dashed curve in Figure 5(a) indicates the classic Berg–Purcell approximation
(4.12), which is significantly less accurate for N = 1. In Figure 5(b), the numerical
results give validation of the relative errors of the asymptotic formula as σ → 0 and
reveal that round-off error limits the smallest relative error obtainable to about one
part in 108.

5.2. Multiple nanotraps. Here we compare the asymptotic approximation for
multiple nanotraps of common radius (3.38) against full numerical calculation of the
rescaled capacitance. The validity of (3.38) is demonstrated for nanotraps centered at
the vertices of the regular Platonic solids and also Fibonacci spiral points for N ≤ 20.
We note that the vertices of the regular Platonic solids have many symmetries which
can potentially obscure errors in the numerical procedure. The Fibonacci spiral points
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Fig. 6. Comparison of the rescaled flux J/(4σ) as predicted by the asymptotic formula (solid
lines) and full numerics (diamonds) with nanotrap locations given by vertices of the regular Platonic
solids (panel (a)) and Fibonacci spirals (panel (b)). The Fibonacci spiral algorithm (Appendix C)
generates an odd number of equispaced points on the sphere.

(Appendix C) do not share these symmetries and therefore provide a good benchmark
for evaluation of the numerical method.

In both cases, Figure 6 shows excellent agreement for configurations up to N = 21
nanotraps. The rescaled flux J/(4σ), where J = 4πC0, has the property that

lim
σ→0

J

4σ
= lim

σ→0

C0

(σ/π)
= N,

in agreement with (3.38) and the original Berg–Purcell result (4.12), and as observed
in each curve of Figure 6.

6. Asymptotics of an exact solution for a single boundary trap. In this
section we derive the result (3.40) for the capacitance of a spherical target of unit
radius that has a single locally circular nanotrap of radius σ � 1 and azimuthal
extent α. This is accomplished by solving (1.5) exactly in the form of a dual Legendre
series. We center the nanotrap at the north pole, so that with azimuthal symmetry
(1.5) reduces to determining v(r, θ) that satisfies

Δv ≡ ∂2v

∂r2
+

2

r

∂v

∂r
+

cot θ

r2
∂v

∂θ
+

1

r2
∂2v

∂θ2
= 0 , r > 1 , 0 ≤ θ ≤ π ,(6.1a)

v = 0 on r = 1 , 0 ≤ θ ≤ α ; vr = 0 on r = 1 , α < θ ≤ π ,(6.1b)

v ∼ 1

r
+A0 as r → ∞ .(6.1c)

Our goal is to calculate the constant A0 from this problem, which determines the
capacitance as C0 = −1/A0. When comparing to the asymptotic formula (3.39), it
is important to note that α measures the azimuthal extent of the nanotrap, whereas
σ measures its radius. Therefore, when comparing (3.39) to the expression for C0

obtained from (6.1), we use the relationship as α → 0 and σ → 0,

(6.2) σ = 2 sin
(α
2

)
=⇒ α = σ +

σ3

24
+O(σ5).
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The series solution of (6.1) has a Legendre expansion of the form

(6.3) v(r, θ) =
1

r
+A0 +

∞∑
n=1

Anr
−(n+1)Pn[cos θ] .

By applying the boundary conditions we obtain a dual Legendre series for the unknown
coefficients An, written as
(6.4)
∞∑
n=0

AnPn[cos θ] = −1 , 0 ≤ θ ≤ α ;

∞∑
n=1

(n+ 1)AnPn[cos θ] = −1 , α < θ ≤ π .

To solve this dual series problem, we follow the methodology of (cf. [47, 14]). We first
rescale the coefficients using

(6.5) A0 = b0; An =

[
1− 1

2(n+ 1)

]
bn , n ≥ 1 ,

so as to obtain the related dual series
(6.6)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
n=0

(1 +Mn)bnPn[cos θ] = f0 ≡ −1 , 0 < θ ≤ α,

∞∑
n=0

(2n+ 1)bnPn[cos θ] = g0 ≡ −2 + b0 , α < θ ≤ π ,

Mn =

⎧⎪⎨
⎪⎩

0 , n = 0 ,

−1

2(n+ 1)
, n ≥ 1 .

There are three key results and identities that are needed in order to obtain the
solution for the coefficients bn. The first is the solution of the following integral
equation:

(6.7)

∫ θ

0

p(u) du√
cosu− cos θ

= q(θ) ⇐⇒ p(u) =
1

π

d

du

∫ u

0

q(θ) sin θ dθ√
cos θ − cosu

.

The two remaining identities required in the analysis are
(6.8)

Pn[cos θ] =

√
2

π

∫ θ

0

cos(n+ 1
2 )u du√

cosu− cos θ
,

√
2

∞∑
n=0

Pn[cosα] cos

(
n+

1

2

)
u =

H(α− u)√
cosu− cos θ

,

where H(z) is the Heaviside function. The first step is to formulate a Legendre
expansion for the solution on the Dirichlet portion of the domain:

(6.9) h(θ) =
∞∑

n=0

(2n+ 1)bnPn[cos θ] , 0 ≤ θ ≤ α .

Then, by inverting this expansion, we obtain that

(6.10) bn =
1

2

∫ α

0

h(θ)Pn[cos θ] sin θ dθ +
1

2

∫ π

α

g0Pn[cos θ] sin θ dθ .
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Substituting this expression for bn into the first equation of (6.6) gives the equation

f0 =
1

2

∫ α

0

h(s) sin s

[ ∞∑
n=0

Pn[cos s]Pn[cos θ]

]
ds+

1

2

∫ π

α

g0 sin s

[ ∞∑
n=0

Pn[cos s]Pn[cos θ]

]
ds

(6.11)

+
1

2

∫ α

0

h(s) sin s

[ ∞∑
n=0

MnPn[cos s]Pn[cos θ]

]
ds

+
1

2

∫ π

α

g0 sin s

[ ∞∑
n=0

MnPn[cos s]Pn[cos θ]

]
ds

= I1 + I2 + I3 + I4 .

The identities (6.8) can be applied to sum the series

∞∑
n=0

Pn[cos s]Pn[cos θ] =

√
2

π

∫ θ

0

∞∑
n=0

Pn[cos s] cos(n+ 1
2 )u√

cosu− cos θ
du

=
1

π

∫ θ

0

H(s− u) du√
cosu− cos θ

√
cosu− cos s

,

and so, after exchanging the order of integration, I1 becomes
(6.12)

I1 =
1

2π

∫ α

0

h(s) sin s

∫ θ

0

H(s− u) du√
cosu− cos θ

√
cosu− cos s

=

∫ α

0

Ĥ(u) du√
cosu− cos θ

,

where Ĥ(u) satisfies
(6.13)

Ĥ(u) =
1

2π

∫ α

u

h(s) sin s ds√
cosu− cos s

⇐⇒ h(θ) =
−2

sin θ

d

dθ

∫ α

θ

Ĥ(u) sinu du√
cos θ − cosu

.

Similar calculations for I2 yield that

(6.14) I2 =

∫ θ

0

Ĝ(u, α) du√
cosu− cos θ

, where Ĝ(u, α) =
1

2π

∫ π

α

g0 sin s ds√
cosu− cos s

.

In the calculations for I3, we again use the first identity in (6.8) to obtain that

I3 =
1

2

∞∑
n=0

Mn

∫ α

0

h(s) sin s Pn[cos θ]Pn[cos s] ds

=
1

π2

∞∑
n=0

Mn

∫ α

0

h(s) sin s ds

∫ θ

0

cos(n+ 1
2 )u du√

cosu− cos θ

∫ s

0

cos(n+ 1
2 )v dv√

cos v − cos s
(6.15)

=

∫ θ

0

du√
cosu− cos θ

∫ α

0

Ĥ(v)K(u, v) dv .

In the final step above, the order of integration was switched and the function K(u, v)
was defined as

K(u, v) =
2

π

∞∑
n=0

Mn cos

(
n+

1

2

)
u cos

(
n+

1

2

)
v .(6.16a)
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This series defining K(u, v) can be summed using the terms Mn in (6.6) to obtain
that
(6.16b)

K(u, v) =
1

4π

⎡
⎢⎣ 2

(
1 + log 2 sin

u+ v

2

)
cos

u+ v

2
+ (u+ v − π) sin

u+ v

2

+ 2
(
1 + log 2 sin

u− v

2

)
cos

u− v

2
+ (u− v − π) sin

u− v

2

⎤
⎥⎦ .

The final integral I4 is similarly calculated to be

(6.17) I4 =

∫ θ

0

du√
cosu− cos θ

[∫ α

0

Ĝ(v, α)K(u, v) dv +

∫ π

α

Ĝ(v, v)K(u, v) dv

]
.

The equation I1 + I2 + I3 + I4 = f0 is an integral equation of type (6.7). Therefore,
the solution satisfies

(6.18) J(u) +

∫ α

0

J(v)K(u, v) dv = M(u) ,

where
(6.19)

J(u) = Ĥ(u)+Ĝ(u, α), M(u) =
1

π

d

du

∫ u

0

f0 sin θ dθ√
cos θ − cosu

−
∫ π

α

Ĝ(v, v)K(u, v) dv .

The expression for b0 is now obtained under the assumption that f0 and g0 are con-
stants. Starting from (6.10), we have

b0 =
1

2

∫ α

0

h(θ) sin θ dθ +
1

2

∫ π

α

g0 sin θ dθ =
1

2

∫ α

0

h(θ) sin θ dθ + g0 cos
2
(α
2

)
.

Then, by using (6.13) and Ĥ(u) = J(u)− Ĝ(u, α), we obtain that

(6.20) b0 =
√
2

∫ α

0

J(u) cos
(u
2

)
du−

√
2

∫ α

0

Ĝ(u, α) cos
(u
2

)
du+ g0 cos

2
(α
2

)
.

Next, from (6.13), we have

Ĝ(u, α) =
1

2π

∫ π

α

g0 sin s ds√
cosu− cos s

=
g0
π

[√
2 cos

(u
2

)
−
√
cosu− cosα

]
,

so that

√
2

∫ α

0

Ĝ(u, α) cos
(u
2

)
du =

g0
π

[
α+ sinα− π sin2

(α
2

)]
.

Upon substituting (6.21) into (6.20), we get

(6.21) b0 =
√
2

∫ α

0

J(u) cos
(u
2

)
du− g0

π

(
α+ sinα− π

)
,

where J(u) satisfies the integral equation (6.18). At this stage, we seek an asymptotic
approximation for

∫ α

0
J(u) cos

(
u
2

)
du in the limit α → 0. From (6.18), we have that

√
2

∫ α

0

J(u) cos
(u
2

)
du+

√
2

∫ α

0

∫ α

0

J(v)K(u, v) cos
(u
2

)
dv du(6.22)

=
√
2

∫ α

0

M(u) cos
(u
2

)
du ,
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where we can simplify M(u) further using (6.21) to give

(6.23) M(u) =

√
2f0
π

cos
(u
2

)
+

√
2g0
π

∫ α

0

cos
(v
2

)
K(u, v) dv .

In the final term on the right-hand side of (6.23), the orthogonality condition∫ π

0 K(u, v) cos
(
u
2

)
du = 0 implies

∫ π

α K(u, v) cos
(
u
2

)
du = −

∫ α

0 K(u, v) cos
(
u
2

)
du.

The right-hand side of (6.22) simplifies to

√
2

∫ α

0

M(u) cos
(u
2

)
du =

f0
π

(
α+ sinα

)
+

2g0
π

∫ α

0

∫ α

0

K(u, v) cos
(u
2

)
cos
(v
2

)
du dv

(6.24)

=
f0
π

(
α+ sinα

)
+

2g0
π

IK1 .

By replacing K(u, v), given in (6.16b), by its small argument approximation, the
integral term IK1 on the right-hand side of (6.24) is found to have the behavior

IK1 =

∫ α

0

∫ α

0

K(u, v) cos
(u
2

)
cos
(v
2

)
du dv(6.25)

=
α2

2π

[
− 1 + 2 logα+ log 4

]
− α3

8
+O(α4 logα) as α → 0 .

The remaining term
∫ α

0

∫ α

0
J(v)K(u, v) cos

(
u
2

)
dv du in (6.22) is now estimated for

α � 1. Following from [47, sections 3.2.3–3.2.6] and applying the Cauchy–Schwarz
inequality to the integral equation (6.18), we obtain that

|J(u)−M(u)| =
∣∣∣∣
∫ α

0

K(u, v)J(u) dv

∣∣∣∣ ≤ ‖K‖2‖J‖2 � 1 as α → 0 ,

where ‖M‖2 =
√∫ α

0
M(u)2du. The logarithmic singularity of K(u, v) and (6.23)

means that (cf. Appendix A of [47])

‖M‖2 = O(
√
α) , ‖J‖2 = O(

√
α) , ‖K‖2 = O(α logα) , α → 0 .(6.26a)

J(u) = M(u) +O(‖K‖2‖M‖2) = M(u) +O(α3/2 logα) .(6.26b)

Therefore, we may now estimate the second integral of (6.22) using (6.26b) and (6.23)
to obtain

√
2

∫ α

0

∫ α

0

J(v)K(u, v) cos
(u
2

)
dv du

=
√
2

∫ α

0

∫ α

0

[
M(v) +O(α3/2 logα)

]
K(u, v) cos

(u
2

)
dv du ,

=

∫ α

0

∫ α

0

[
2f0
π

cos
(v
2

)
+

2g0
π

∫ α

0

cos
(s
2

)
K(v, s) ds

]
K(u, v) cos

(u
2

)
dv du ,

=
2f0
π

IK1 +
2g0
π

IK2 +O(α7/2 log2 α) ,

(6.27)
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where IK1 was given in (6.25) and IK2 satisfies

IK2 =

∫ α

0

∫ α

0

[ ∫ α

0

cos
(s
2

)
K(v, s) ds

]
K(u, v) cos

(u
2

)
dv du

(6.28)

=
α3

π2

[
log2 α+ (2 log 2− 1) logα+ log2 2− log 2 +

15− π2

18

]
as α → 0 .

Therefore, (6.24) together with (6.25) and (6.27) yields that

√
2

∫ α

0

J(u) cos
(u
2

)
du

=
√
2

∫ α

0

M(u) cos
(u
2

)
du −

√
2

∫ α

0

∫ α

0

J(v)K(u, v) cos
(u
2

)
dv du

=
f0
π

(
2α− α3

6

)
+

2g0
π

IK1 −
2f0
π

IK1 −
2g0
π

IK2 +O(α7/2 log2 α) as α → 0 .

(6.29)

The final expression for b0 arises from substituting (6.29) into (6.21) to yield that

b0 =
f0
π

(
2α− α3

6

)
+

2g0
π

IK1 −
2f0
π

IK1 −
2g0
π

IK2 −
g0
π

(
2α− α3

6
−π
)

as α → 0 .

Applying the values f0 = −1 and g0 = −2 + b0 and solving the resulting algebraic
equation for b0, we conclude that
(6.30)

b0 = −π

α

[
1+

α

π

(
logα− 3

2
+ log 2

)
+
α2

π2

(
π2 − 42

72

)
+O(α3 log3 α)

]
as α → 0 .

Returning to an expression in terms of the nanotrap radius σ using (6.2) and α ∼
σ+σ3/24 as σ → 0, while also recalling from (6.5) that b0 = A0 and that A0 = −1/C0,
where C0 is the capacitance of the spherical target, we conclude that the right-hand
side of (6.30) agrees with the expression for −1/C0 as derived in (3.39) from the
matched asymptotic expansion approach, with an improved error estimate. The result
for the capacitance is
(6.31)
1

C0
=

π

σ

[
1 +

σ

π

(
log σ − 3

2
+ log 2

)
− σ2

π2

(
π2 + 21

36

)
+O(σ3 log σ)

]
as σ → 0.

The absence of O(σ2 log2 σ, σ2 log σ) terms in (6.31) arises from cancellations which
are particular to the N = 1 case, as also seen with the O(σ2 log2 σ) term of (3.37). In
Figure 5, a favorable comparison of (6.31) with full numerical simulations is shown.

7. Discussion. We have analyzed the MFPT and standard deviation for Brown-
ian motion in a bounded 3-D domain that contains a small structured spherical target
of radius ε � 1 whose boundary has a collection of even smaller disk-shaped surface
nanotraps of radii O(εσ) with σ � 1 on an otherwise reflecting surface. The MFPT
and the standard deviation both depend on the capacitance C0 associated with the
target. We have established the new result that the average MFPT, pertaining to a
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uniform distribution of initial points for the Brownian walk, and the standard devi-
ation are identical up to two orders in ε. As a result, the MFPT may not in itself
be a reliable predictor of the capture time for a pure Brownian walk. It would be
interesting to extend this analysis to compare the MFPT and standard deviation for
a narrow capture process where there is a biased random walk or drift directed to the
target site (cf. [28, 29]).

Our main focus was the derivation and numerical validation of an asymptotic
expansion for the capacitance C0 of the structured target in the limit σ � 1 of small
nanotrap radius for a finite collection of N circular nanotraps. We have shown that
C0 depends significantly on the spatial configuration of nanotraps and the fragmen-
tation of the nanotrap set. The capacitance C0 was shown to be maximized, and the
corresponding MFPT minimized, when the configuration {y1, . . . ,yN} of the centers
of the nanotraps minimize a certain discrete energy H related to pairwise interac-
tions induced by the surface Neumann Green’s function. This discrete energy is a
generalization of the classical Fekete point interaction energy (cf. [44]) and is similar
to that derived for the narrow escape problem in [12]. It would be interesting to
use the computational optimization framework of [12] to numerically identify optimal
configurations of N nanotraps of a common radius that maximize C0. It would also
be worthwhile to provide a rigorous proof of our formula for C0 by extending the
approach of [10] used to prove a related result of [12] for the narrow escape problem.

In the limit N → ∞, with scaling N ≤ O(− log σ), we have used the large N
asymptotics of the discrete energy for a spatially uniform configuration of nanotraps
to derive a new homogenized expression for C0 in the low nanotrap surface area
fraction f = O(−σ2 log σ) � 1 limit. In this way, we showed systematically how
to replace the nonuniform boundary condition on the surface of the target sphere
by an effective Robin boundary condition with a trapping rate κ determined by the
homogenized capacitance. The leading order term in κ is the well-known Berg–Purcell
result [4], and our analysis provides in a systematic way, with no fitting parameters,
certain correction terms.

Finally, it would be interesting to determine the narrow capture time when one
includes a more biologically realistic model of an individual nanotrap. One rather
simplistic model for surface nanotraps is to assume that they can exhibit Markovian
switching between an on and off state, which roughly models the opening and clos-
ing of nanotraps on the cell nucleus. In [8] the related, but simpler, MFPT problem
in which the entire boundary of a target sphere can switch between absorbing or re-
flecting was analyzed. However, a more biologically realistic class of surface nanotrap
models is to consider a gated process in which a Brownian particle can switch states
inside the boundary layer near the trap due to conformational changes of the ligand,
as was discussed and modeled in [42]. Mathematically, with either class [42] or [8]
of nanotrap models, one must extend our analysis of a scalar singularly perturbed
elliptic problem to a two-component singularly perturbed elliptic system.

Appendix A. The exterior surface Green’s function for a sphere. In
this appendix we determine the local and far-field behavior of the surface Green’s
function for the unit sphere satisfying (1.7c) with a boundary singularity at θ0, φ0.
The exact solution to (1.7) (cf. [35], [25]) is given in (1.7c). We first derive the local
behavior (3.5) for G as y → y0 ≡ (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)

T in terms of the
local variables
(A.1)
z = σ−1 (y − y0) , η = σ−1(r − 1) , s1 = σ−1 sin θ0 (φ− φ0) , s2 = σ−1(θ − θ0) ,
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where r = |y|. To establish (3.5), we first use the law of cosines to get |y − y0|2 =
|y|2 + 1 − 2y·y0 since |y0| = 1. This yields σ2|z|2 = (1 + 2ση + σ2η2) + 1 − 2y·y0,
and so 1− y·y0 = −ση + σ2

(
|z|2 − η2

)
/2. In this way, we calculate that

(A.2) 1−y·y0+|y−y0| = σ(|z|−η)+σ2
(
|z|2 − η2

)
, |y|−y·y0 =

σ2

2

(
|z|2 − η2

)
.

Upon substituting (A.2) into (1.7c), and canceling a common factor of |z| − σ, we
obtain that

log

(
1− y·y0 + |y − y0|

|y| − y·y0

)
∼ log

(
2

σ(|z| + η)
+ 2

)
∼ − log

(σ
2

)
− log(|z|+η)+O(σ) .

Combining this relation with (1.7c), we obtain as y → y0 that

(A.3) G(y;y0) ∼
1

2πσ|z| +
1

4π
log
(σ
2

)
+

1

4π
log (|z|+ η) +O(σ) .

Next, we derive a two-term expansion for |z|−1 in terms of the local coordinates
(s1, s2, ρ), where ρ ≡

√
s21 + s22 + η2.

Lemma A.1. In terms of the local coordinates in (A.1), we have that
(A.4)
1

|z| =
1

ρ
− σ

2ρ3

[
η(s21 + s22) + s21s2 cot θk

]
+O(σ2) , where ρ ≡

√
η2 + s21 + s22 .

Proof. We write y = r(sin θ cosφ, sinφ sin θ, cos θ)T ≡ (f1(r, φ, θ), f2(r, φ, θ),
f3(r, φ, θ))

T . A Taylor series approximation to second order about y0 yields that

y − y0 = Jh+ 1
2e+ · · · , where h ≡ (r − 1, φ− φ0, θ − θ0)

T
and

J ≡=

⎛
⎝ cosφ0 sin θ0 − sinφ0 sin θ0 cosφ0 cos θ0

sinφ0 sin θ0 cosφ0 sin θ0 sinφ0 cos θ0
cos θ0 0 − sin θ0

⎞
⎠ , e ≡

⎛
⎝ hTH1h

hTH2h
hTH3h

⎞
⎠ ,

(A.5)

Hj ≡

⎛
⎝ f0

jrr f0
jrφ f0

jrθ

f0
jrφ f0

jφφ f0
jφθ

f0
jrθ f0

jφθ f0
jθθ

⎞
⎠ ,

where the Hj are evaluated at y0. Setting y−y0 = σz, and writing h in terms of the
local coordinates (A.1), we get

|z| =
(
h0J

TJh0+σhT
0 J

Te0+O(σ2)
)1/2

, h0 ≡

⎛
⎝ η
s1/ sin θ0

s2

⎞
⎠ , e0 ≡

⎛
⎝ hT

0 H1h0

hT
0 H2h0

hT
0 H3h0

⎞
⎠ .

We readily calculate that h0J
TJh0 = ρ2 = (η2+s21+s22), so that by using the binomial

theorem and by a straightforward but lengthy calculation of JT e0, we obtain

1

|z| =
1

ρ
− σ

2ρ3
hT
0 J

T e0 +O(σ2) , where JTe0 =

⎛
⎝ −(s21 + s22)

2ηs1 sin θ0 + 2s1s2 cos θ0
2ηs2 − s21 cot θ0

⎞
⎠ .

(A.6)

By calculating hT
0 (J

Te0) we get (A.4). Finally, upon substituting (A.4) into (A.3),
we obtain the local behavior (3.5).
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Finally, we find the behavior of G(y;y0) as |y| → ∞. From the law of cosines,
|y − y0| ∼ |y| − y·y0/|y|+ · · · , so that

log

(
1−y·y0 + |y − y0|

|y| − y·y0

)
∼ log

(
1− y·y0 + |y| − y·y0/|y|

|y| − y·y0

)
= log

(
1 +

1

|y|

)
∼ 1

|y|

(A.7)

for |y| 	 1 .

From (1.7c) it follows that G(y;y0) ∼ [4π|y|]−1
as |y| → ∞. As a remark, if we carry

the calculation to one higher order, we can obtain the dipole term in the far-field
behavior explicitly as

(A.8) G(y;y0) ∼
1

4π|y| +
3

8π

y·y0

|y|3 + · · · as |y| → ∞ .

Appendix B. The inner problem for w2. In this appendix we summarize
the analysis of the solution to (3.26) and (3.27), and the determination of the far-
field behavior of w2 in (3.25). The first result provides the explicit solution for w2e

satisfying (3.27).

Lemma B.1. The exact solution to (3.27) is

(B.1) w2e =
η2

2
∂ηwc +

η

2
wc −

1

2

∫ η

0

wc(z, s1, s2) dz − K(s1, s2) + w2h ,

where wc is the solution (3.11c) to the electrified disk problem (3.11). Here K(s1, s2)
is the unique solution to the following Poisson’s equation with a compactly supported
inhomogeneous term:

ΔsK ≡ Ks1s1 + Ks2s2 = −1

2
∂ηwc|η=0 ;

K(s1, s2) ∼
ck
2
log |s|+ o(1) as |s| ≡ (s21 + s22)

1/2 → ∞ ,(B.2)

where ck = 2ak/π. In terms of K(s1, s2), the function w2h in (B.1) satisfies the
half-space problem formulated as

Lw2h = 0 , η > 0, −∞ < s1, s2 < ∞ ,(B.3a)

w2h = K(s1, s2) , η = 0 , s21 + s22 < a2k ; ∂ηw2h = 0 , η = 0 , s21 + s22 ≥ a2k ,

(B.3b)

w2h = O(ρ−1) as ρ = (η2 + s21 + s22)
1/2 → ∞ ,(B.3c)

where L ≡ ∂ηη + ∂s1s1 + ∂s2s2 . The far-field behavior for w2h is

(B.3d) w2h ∼ ckbk
ρ

as ρ → ∞ , where bk ≡ ck
2

(
log(4ak)−

3

2

)
.

The solution w2e to (3.27), written in (B.1), has the far-field behavior

(B.4) w2e ∼ −ck
2
log(η + ρ) +

ck
2ρ3

η(s21 + s22) +
ckbk
ρ

+ · · · as ρ → ∞ .
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Before proving this result, we remark that the o(1) condition in the far-field be-
havior (B.2) and the decay condition in (B.3c) determine K(s1, s2) and w2h uniquely.
In addition, upon using the divergence theorem on the problem (3.11) for wc, it read-
ily follows that the far-field behavior in (B.2) for K has the correct strength for the
logarithmic singularity.

Proof. We must first establish that (B.1) accounts for the inhomogeneous term in
the PDE (3.27). Then we must show that both the boundary conditions (3.27b) and
the required far-field behavior (3.27c) are satisfied. We first verify that (B.1) satisfies
the PDE (3.27). We write Lv ≡ vηη +Δsv, where Δsv ≡ vs1s1 + vs2s2 , and calculate
that

Lw2e =
η2

2
∂ηηηwc+

5

2
η∂ηηwc+

3

2
∂ηwc+

η2

2
∂η (Δswc)+

η

2
Δswc−

1

2

∫ η

0

Δswc dz−ΔsK .

Then, by using the PDE ∂ηηwc = −Δswc satisfied by wc, the expression above be-
comes

Lw2e =
η2

2
∂ηηηwc +

5

2
η∂ηηwc +

3

2
∂ηwc −

η2

2
∂ηηηwc −

η

2
∂ηηwc

+
1

2
(∂ηwc − ∂ηwc|η=0)−ΔsK = 2 (η∂ηηwc + ∂ηwc) ,

as desired, provided that ΔsK = − 1
2∂ηwc|η=0. Therefore, w2e satisfies the PDE

(3.27a) when K satisfies (B.2).
Next, we observe from (B.1) that on η = 0 the boundary conditions ∂ηw2e = 0

for s21+ s22 > a2k and w2e = 0 for s21 + s22 < a2k are satisfied, provided that w2h satisfies
the boundary conditions in (B.3b).

To establish the far-field behavior (B.3d) for w2h we analyze the problem (B.3)
for w2h. By using (3.11c), we first calculate ∂ηwc|η=0 on the nanotrap. Upon defining

|s| ≡
√

s21 + s22, we conclude from (B.2) that K satisfies

(B.5) ΔsK =

{
π−1

[
a2k − |s|2

]−1/2
, 0 ≤ |s| < ak ,

0 , |s| ≥ ak .

The unique solution to (B.5) that satisfies the far-field condition in (B.2) depends
only on |s| and is

(B.6) K(|s|) =
{

1
π

[
ak log

(
ak +

√
a2k − |s|2

)
−
√
a2k − |s|2

]
, 0 ≤ |s| ≤ ak ,

ak

π log |s| , |s| ≥ ak .

Then, by using this explicit expression for K(|s|) for 0 < |s| < ak in the boundary
condition for w2h in (B.3) on the nanotrap, we can calculate the monopole behavior
of w2h as ρ → ∞ in (B.3d) by using the known far-field behavior

(B.7) w2h ∼ 2

πρ

∫ ak

0

K(|s|)|s|√
a2k − |s|2

d|s| as ρ → ∞ ,

as given in [18] and section 1.4 of [19]. The integral in (B.7) is readily evaluated to
yield the far-field behavior in (B.3d).

Finally, with the far-field behavior of w2h now known, we next determine the
asymptotic far-field behavior of w2e as defined in (B.1). We use wc ∼ cjρ

−1 as
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ρ → ∞ with ρ = (η2 + |s|2)1/2 and |s| = (s21 + s22)
1/2 to calculate

1

2
η2∂ηwc +

1

2
ηwc ∼

ck
2

η|s|2

(η2 + |s|2)3/2
as ρ → ∞ ,(B.8a)

1

2

∫ η

0

wc(z, s1, s2) dz ∼ ck
2

∫ η

0

1

(z2 + |s|2)1/2
dz =

ck
2

[
log
(
η +
√
η2 + |s|2

)
− log |s|

]
as ρ → ∞ .(B.8b)

Since K ∼ ck
2 log |s| + o(1) as |s| → ∞ cancels the last term in (B.8b), w2e in (B.1)

has the far-field behavior (B.4).

Lemma B.2. The exact solution to (3.26) is given explicitly by

(B.9) w2o = cot θk

(
s21
2
∂s2wc − s2s1∂s1wc

)
.

Proof. We first verify that w2o satisfies the PDE (3.26). Upon using L (∂s1wc) = 0
and L (∂s2wc) = 0, we calculate

Lw2o = cot θk

[
1

2
L
(
s21∂s2wc

)
− L (s1s2∂s1wc)

]

= cot θkv

[
1

2
(4s1∂s2s1wc + 2∂s2wc)− (2s2∂s1s1wc + 2s1∂s2s1wc)

]
= cot θk (∂s2wc − 2s2∂s1s1wc) ,

as required. Next, we verify the boundary conditions in (3.26b). Since wc = 1 on the
nanotrap, it follows that ∂s1wc = 0, ∂s2wc = 0, and consequently w2o = 0, on the
nanotrap. Off the nanotrap, we have ∂ηwc = 0, so that by differentiating (B.9) in η
it follows that ∂ηw2o = 0 holds off the nanotrap. Finally, we use wc ∼ ck/ρ as ρ → ∞
to find that the far-field condition (3.26c) holds exactly, and consequently there is no
monopole term in the far-field behavior of w2o.

Appendix C. Distribution of points on a sphere. The equidistribution of a
fixed number of points on the surface of a sphere is a long-studied problem in approx-
imation theory [44] and arises in many disparate fields. An easy-to-implement algo-
rithm which produces a very homogeneously distributed set of points is the Fibonacci
lattice [21, 49]. Starting from an integer M , this algorithm produces N = 2M + 1
points on the sphere with the kth point given in spherical coordinates by

sin θk =
2k

N
, φk =

2πk

Φ
,

where Φ = 1+Φ−1 = (1+
√
5)/2 ≈ 1.618 is the golden ratio. This can be implemented

in a few lines of MATLAB code:

% Fibonacci Lattice Points

M = 400; N = 2*M+1;

theta = pi/2 - asin(2*(-M:M)/N);

phi = 4*pi*(-M:M)/(1+sqrt(5));

x = sin(theta).*cos(phi); y = sin(theta).*sin(phi); z = cos(theta);
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