2,824 research outputs found
Obstetric Thromboprophylaxis: The Swedish Guidelines
Obstetric thromboprophylaxis is difficult. Since 10 years Swedish obstetricians have used a combined risk estimation model and recommendations concerning to whom, at what dose, when, and for how long thromboprophylaxis is to be administrated based on a weighted risk score. In this paper we describe the background and validation of the Swedish guidelines for obstetric thromboprophylaxis in women with moderate-high risk of VTE, that is, at similar or higher risk as the antepartum risk among women with history of thrombosis. The risk score is based on major risk factors (i.e., 5-fold increased risk of thromboembolism). We present data on the efficacy of the model, the cost-effectiveness, and the lifestyle advice that is given. We believe that the Swedish guidelines for obstetric thromboprophylaxis aid clinicians in providing women at increased risk of VTE with effective and appropriate thromboprophylaxis, thus avoiding both over- and under-treatment
Dynamical Friction on Star Clusters near the Galactic Center
Numerical simulations of the dynamical friction suffered by a star cluster
near the Galactic center have been performed with a parallelized tree code.
Gerhard (2001) has suggested that dynamical friction, which causes a cluster to
lose orbital energy and spiral in towards the galactic center, may explain the
presence of a cluster of very young stars in the central parsec, where star
formation might be prohibitively difficult owing to strong tidal forces. The
clusters modeled in our simulations have an initial total mass of 10^5-10^6
Msun and initial galactocentric radii of 2.5-30 pc. We have identified a few
simulations in which dynamical friction indeed brings a cluster to the central
parsec, although this is only possible if the cluster is either very massive
(~10^6 Msun), or is formed near the central parsec (<~ 5 pc). In both cases,
the cluster should have an initially very dense core (> 10^6 Msun pc-3). The
initial core collapse and segregation of massive stars into the cluster core,
which typically happens on a much shorter time scale than that characterizing
the dynamical inspiral of the cluster toward the Galactic center, can provide
the requisite high density. Furthermore, because it is the cluster core which
is most likely to survive the cluster disintegration during its journey
inwards, this can help account for the observed distribution of presumably
massive HeI stars in the central parsec.Comment: Accepted for publication in Ap
5 year Global 3-mm VLBI survey of Gamma-ray active blazars
The Global mm-VLBI Array (GMVA) is a network of 14 3\,mm and 7\,mm capable
telescopes spanning Europe and the United States, with planned extensions to
Asia. The array is capable of sensitive maps with angular resolution often
exceeding 50\,as. Using the GMVA, a large sample of prominent -ray
blazars have been observed approximately 6 monthly from later 2008 until now.
Combining 3\,mm maps from the GMVA with near-in-time 7\,mm maps from the
VLBA-BU-BLAZAR program and 2\,cm maps from the MOJAVE program, we determine the
sub-pc morphology and high frequency spectral structure of -ray
blazars. The magnetic field strength can be estimated at different locations
along the jet under the assumption of equipartition between magnetic field and
relativistic particle energies. Making assumptions on the jet magnetic field
configuration (e.g. poloidal or toroidal), we can estimate the separation of
the mm-wave "core" and the jet base, and estimate the strength of the magnetic
field there. The results of this analysis show that on average, the magnetic
field strength decreases with a power-law , .
This suggests that on average, the mm-wave "core" is \,pc downstream
of the de-projected jet apex and that the magnetic field strength is of the
order \,kG, broadly consistent with the predictions of
magnetic jet launching (e.g. via magnetically arrested disks (MAD)).Comment: 6 pages, 1 figur
The slope of the black-hole mass versus velocity dispersion correlation
Observations of nearby galaxies reveal a strong correlation between the mass
of the central dark object M and the velocity dispersion sigma of the host
galaxy, of the form log(M/M_sun) = a + b*log(sigma/sigma_0); however, published
estimates of the slope b span a wide range (3.75 to 5.3). Merritt & Ferrarese
have argued that low slopes (<4) arise because of neglect of random measurement
errors in the dispersions and an incorrect choice for the dispersion of the
Milky Way Galaxy. We show that these explanations account for at most a small
part of the slope range. Instead, the range of slopes arises mostly because of
systematic differences in the velocity dispersions used by different groups for
the same galaxies. The origin of these differences remains unclear, but we
suggest that one significant component of the difference results from Ferrarese
& Merritt's extrapolation of central velocity dispersions to r_e/8 (r_e is the
effective radius) using an empirical formula. Another component may arise from
dispersion-dependent systematic errors in the measurements. A new determination
of the slope using 31 galaxies yields b=4.02 +/- 0.32, a=8.13 +/- 0.06, for
sigma_0=200 km/s. The M-sigma relation has an intrinsic dispersion in log M
that is no larger than 0.3 dex. In an Appendix, we present a simple model for
the velocity-dispersion profile of the Galactic bulge.Comment: 37 pages, 9 figure
The circumstellar envelope around the S-type AGB star W Aql Effects of an eccentric binary orbit
The CO(J=3-2) emission from the CSE of the binary S-type AGB star W Aql has
been observed at subarcsecond resolution using ALMA. The aim of this paper is
to investigate the wind properties of the AGB star and to analyse how the known
companion has shaped the CSE. The average mass-loss rate during the creation of
the detected CSE is estimated through modelling, using the ALMA brightness
distribution and previously published single-dish measurements as observational
constraints. The ALMA observations are presented and compared to the results
from a 3D smoothed particle hydrodynamics (SPH) binary interaction model with
the same properties as the W Aql system and with two different orbital
eccentricities. Three-dimensional radiative transfer modelling is performed and
the response of the interferometer is modelled and discussed. The estimated
average mass-loss rate of W~Aql agrees with previous results. The size of the
emitting region is consistent with photodissociation models. The CO(J=3-2)
emission is dominated by a smooth component overlayed with two weak arc
patterns with different separations. The larger pattern is predicted by the
binary interaction model with separations of 10" and therefore likely due to
the known companion. It is consistent with a binary orbit with low
eccentricity. The smaller separation pattern is asymmetric and coincides with
the dust distribution, but the separation timescale (200 yrs) is not consistent
with any known process of the system. The separation of the known companions of
the system is large enough to not have a very strong effect on the
circumstellar morphology. The density contrast across the envelope of a binary
with an even larger separation will not be easily detectable, even with ALMA,
unless the orbit is strongly asymmetric or the AGB star has a much larger
mass-loss rate.Comment: 10 pages, 8 figure
N-Body Simulations of Compact Young Clusters near the Galactic Center
We investigate the dynamical evolution of compact young star clusters (CYCs)
near the Galactic center (GC) using Aarseth's Nbody6 codes. The relatively
small number of stars in the cluster (5,000-20,000) makes real-number N-body
simulations for these clusters feasible on current workstations. Using
Fokker-Planck (F-P) models, Kim, Morris, & Lee (1999) have made a survey of
cluster lifetimes for various initial conditions, and have found that clusters
with a mass <~ 2x10^4 Msun evaporate in ~10 Myr. These results were, however,
to be confirmed by N-body simulations because some extreme cluster conditions,
such as strong tidal forces and a large stellar mass range participating in the
dynamical evolution, might violate assumptions made in F-P models. Here we find
that, in most cases, the CYC lifetimes of previous F-P calculations are 5-30%
shorter than those from the present N-body simulations. The comparison of
projected number density profiles and stellar mass functions between N-body
simulations and HST/NICMOS observations by Figer et al. (1999) suggests that
the current tidal radius of the Arches cluster is ~1.0 pc, and the following
parameters for the initial conditions of that cluster: total mass of 2x10^4
Msun and mass function slope for intermediate-to-massive stars of 1.75 (the
Salpeter function has 2.35). We also find that the lower stellar mass limit,
the presence of primordial binaries, the amount of initial mass segregation,
and the choice of initial density profile (King or Plummer models) do not
significantly affect the dynamical evolution of CYCs.Comment: 20 pages including 6 figures, To appear in ApJ, Dec 20 issu
- …