3,074 research outputs found

    Inference with interference between units in an fMRI experiment of motor inhibition

    Full text link
    An experimental unit is an opportunity to randomly apply or withhold a treatment. There is interference between units if the application of the treatment to one unit may also affect other units. In cognitive neuroscience, a common form of experiment presents a sequence of stimuli or requests for cognitive activity at random to each experimental subject and measures biological aspects of brain activity that follow these requests. Each subject is then many experimental units, and interference between units within an experimental subject is likely, in part because the stimuli follow one another quickly and in part because human subjects learn or become experienced or primed or bored as the experiment proceeds. We use a recent fMRI experiment concerned with the inhibition of motor activity to illustrate and further develop recently proposed methodology for inference in the presence of interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package cin (Causal Inference for Neuroscience) implementing the proposed method is freely available on CRAN at https://CRAN.R-project.org/package=ci

    Head-on collision of unequal mass black holes: close-limit predictions

    Full text link
    The close-limit method has given approximations in excellent agreement with those of numerical relativity for collisions of equal mass black holes. We consider here colliding holes with unequal mass, for which numerical relativity results are not available. We try to ask two questions: (i) Can we get approximate answers to astrophysical questions (ideal mass ratio for energy production, maximum recoil velocity, etc.), and (ii) can we better understand the limitations of approximation methods. There is some success in answering the first type of question, but more with the second, especially in connection with the issue of measures of the intrinsic mass of the colliding holes, and of the range of validity of the method.Comment: 19 pages, RevTeX + 9 postscript figure

    Black hole collisions from Brill-Lindquist initial data: predictions of perturbation theory

    Get PDF
    The Misner initial value solution for two momentarily stationary black holes has been the focus of much numerical study. We report here analytic results for an astrophysically similar initial solution, that of Brill and Lindquist (BL). Results are given from perturbation theory for initially close holes and are compared with available numerical results. A comparison is made of the radiation generated from the BL and the Misner initial values, and the physical meaning is discussed.Comment: 11 pages, revtex3.0, 5 figure

    Traversable Wormholes in Geometries of Charged Shells

    Get PDF
    We construct a static axisymmetric wormhole from the gravitational field of two charged shells which are kept in equilibrium by their electromagnetic repulsion. For large separations the exterior tends to the Majumdar-Papapetrou spacetime of two charged particles. The interior of the wormhole is a Reissner-Nordstr\"om black hole matching to the two shells. The wormhole is traversable and connects to the same asymptotics without violation of energy conditions. However, every point in the Majumdar-Papapetrou region lies on a closed timelike curve.Comment: 9 pages, LaTeX, 1 figur

    Bulk gravitons from a cosmological brane

    Full text link
    We investigate the emission of gravitons by a cosmological brane into an Anti de Sitter five-dimensional bulk spacetime. We focus on the distribution of gravitons in the bulk and the associated production of `dark radiation' in this process. In order to evaluate precisely the amount of dark radiation in the late low-energy regime, corresponding to standard cosmology, we study numerically the emission, propagation and bouncing off the brane of bulk gravitons.Comment: 27 pages, 5 figures, minor corrections. Final versio

    Capture Velocity for a Magneto-Optical Trap in a Broad Range of Light Intensity

    Get PDF
    In a recent paper, we have used the dark-spot Zeeman tuned slowing technique [Phys. Rev. A 62, 013404-1, (2000)] to measure the capture velocity as a function of laser intensity for a sodium magneto optical trap. Due to technical limitation we explored only the low light intensity regime, from 0 to 27 mW/cm^2. Now we complement that work measuring the capture velocity in a broader range of light intensities (from 0 to 400 mW/cm^2). New features, observed in this range, are important to understant the escape velocity behavior, which has been intensively used in the interpretation of cold collisions. In particular, we show in this brief report that the capture velocity has a maximum as function of the trap laser intensity, which would imply a minimum in the trap loss rates.Comment: 2 pages, 2 figure

    Generalized Vaidya Solutions

    Get PDF
    A large family of solutions, representing, in general, spherically symmetric Type II fluid, is presented, which includes most of the known solutions to the Einstein field equations, such as, the monopole-de Sitter-charged Vaidya ones.Comment: Gen. Relativ. Grav. 31 (1), 107-114 (1999

    Head--on Collision of Two Unequal Mass Black Holes

    Get PDF
    We present results from the first fully nonlinear numerical calculations of the head--on collision of two unequal mass black holes. Selected waveforms of the most dominant l=2, 3 and 4 quasinormal modes are shown, as are the total radiated energies and recoil velocities for a range of mass ratios and initial separations. Our results validate the close and distant separation limit perturbation studies, and suggest that the head--on collision scenario is not likely to produce an astrophysically significant recoil effect.Comment: 5 pages, 3 figure

    Understanding initial data for black hole collisions

    Get PDF
    Numerical relativity, applied to collisions of black holes, starts with initial data for black holes already in each other's strong field. The initial hypersurface data typically used for computation is based on mathematical simplifying prescriptions, such as conformal flatness of the 3-geometry and longitudinality of the extrinsic curvature. In the case of head on collisions of equal mass holes, there is evidence that such prescriptions work reasonably well, but it is not clear why, or whether this success is more generally valid. Here we study these questions by considering the ``particle limit'' for head on collisions of nonspinning holes. Einstein's equations are linearized in the mass of the small hole, and described by a single gauge invariant spacetime function psi, for each multipole. The resulting equations have been solved by numerical evolution for collisions starting from various initial separations, and the evolution is studied on a sequence of hypersurfaces. In particular, we extract hypersurface data, that is psi and its time derivative, on surfaces of constant background Schwarzschild time. These evolved data can then be compared with ``prescribed'' data, evolved data can be replaced by prescribed data on any hypersurface, and evolved further forward in time, a gauge invariant measure of deviation from conformal flatness can be evaluated, etc. The main findings of this study are: (i) For holes of unequal mass the use of prescribed data on late hypersurfaces is not successful. (ii) The failure is likely due to the inability of the prescribed data to represent the near field of the smaller hole. (iii) The discrepancy in the extrinsic curvature is more important than in the 3-geometry. (iv) The use of the more general conformally flat longitudinal data does not notably improve this picture.Comment: 20 pages, REVTEX, 26 PS figures include

    Effective Action and Thermodynamics of Radiating Shells in General Relativity

    Get PDF
    An effective action is obtained for the area and mass aspect of a thin shell of radiating self-gravitating matter. On following a mini-superspace approach, the geometry of the embedding space-time is not dynamical but fixed to be either Minkowski or Schwarzschild inside the shell and Vaidya in the external space filled with radiation. The Euler-Lagrange equations of motion are discussed and shown to entail the expected invariance of the effective Lagrangian under time-reparametrization. They are equivalent to the usual junction equations and suggest a macroscopic quasi-static thermodynamic description.Comment: LATeX, 20 pages, 2 Fig
    • 

    corecore