484 research outputs found

    Protein Folding Sculpting Evolutionary Change

    Get PDF
    Our work suggests that the forces that govern protein folding exert a profound effect on how genotypes are translated into phenotypes and that this in turn has strong effects on evolutionary processes. Molecular chaperones, also known as “heat-shock proteins” (Hsps), promote the correct folding and maturation of many other proteins in the cell. Hsp90 is an abundant and highly specialized chaperone that works on a particularly interesting group of client proteins: metastable signal transducers that are key regulators of a broad spectrum of biological processes. Such proteins often have evolved to finish folding only when they have received a specific signal, such as the binding of a ligand or a posttranslational modification. Importantly, the folding of Hsp90 clients is particularly sensitive to changes in the external and internal environment of the cell. Therefore, Hsp90 is uniquely positioned to couple environmental contingencies to the evolution of new traits. Our work has helped to define two mechanisms by which Hsp90 might influence the acquisition of new phenotypes. First, by robustly maintaining signaling pathways, Hsp90 can buffer the effects of mutations in those pathways, allowing the storage of cryptic genetic variation that is released by stress. In this case, when the Hsp90 buffer is compromised by environmental stress, new traits appear. These traits can also be assimilated, so that they become manifest even in the absence of stress, when genetic recombination and selection enrich causative variants in subsequent generations. Second, Hsp90 can potentiate the effects of genetic variation, allowing new mutations to produce immediate phenotypes. In this case, when Hsp90 function is compromised, new traits are lost. These traits can also be assimilated, so that they are maintained under environmental stress, but this is achieved through new mutations. We have discovered these powerful evolutionary mechanisms in fruit flies, mustard plants, and fungi, but expect them to operate in all eukaryotes. Another line of work relating protein folding to the evolution of new traits involves protein-based hereditary elements known as prions. These produce changes in phenotype through heritable, self-perpetuating changes in protein conformation. Because changes in protein homeostasis occur with environmental stress, prions can be cured or induced by stress, creating heritable new phenotypes that depend on the genetic variation present in the organism. Both prions and Hsp90 provide plausible mechanisms for allowing genetic diversity and fluctuating environments to fuel the pace of evolutionary change. The multiple mechanisms by which protein folding can influence the evolution of new traits provide both a new paradigm for understanding rapid, stepwise evolution and a framework for targeted therapeutic interventions.United States. National Institutes of Health (grant R01GM025874)Broad Institute of MIT and HarvardG. Harold and Leila Y. Mathers FoundationHoward Hughes Medical Institut

    Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region

    Get PDF
    Heat-shock protein 104 (Hsp104p) is a protein-remodeling factor that promotes survival after extreme stress by disassembling aggregated proteins and can either promote or prevent the propagation of prions (protein-based genetic elements). Hsp104p can be greatly overexpressed without slowing growth, suggesting tight control of its powerful protein-remodeling activities. We isolated point mutations in Hsp104p that interfere with this control and block cell growth. Each mutant contained alterations in the middle region (MR). Each of the three MR point mutations analyzed in detail had distinct phenotypes. In combination with nucleotide binding site mutations, Hsp104p(T499I) altered bud morphology and caused septin mislocalization, colocalizing with the misplaced septins. Point mutations in the septin Cdc12p suppressed this phenotype, suggesting that it is due to direct Hsp104p–septin interactions. Hsp104p(A503V) did not perturb morphology but stopped cell growth. Remarkably, when expressed transiently, the mutant protein promoted survival after extreme stress as effectively as did wild-type Hsp104p. Hsp104p(A509D) had no deleterious effects on growth or morphology but had a greatly reduced ability to promote thermotolerance. That mutations in an 11-amino acid stretch of the MR have such profound and diverse effects suggests the MR plays a central role in regulating Hsp104p function

    A heritable switch in carbon source utilization driven by an unusual yeast prion

    Get PDF
    Several well-characterized fungal proteins act as prions, proteins capable of multiple conformations, each with different activities, at least one of which is self-propagating. Through such self-propagating changes in function, yeast prions act as protein-based elements of phenotypic inheritance. We report a prion that makes cells resistant to the glucose-associated repression of alternative carbon sources, [GAR[superscript +]] (for “resistant to glucose-associated repression,” with capital letters indicating dominance and brackets indicating its non-Mendelian character). [GAR[superscript +]] appears spontaneously at a high rate and is transmissible by non-Mendelian, cytoplasmic inheritance. Several lines of evidence suggest that the prion state involves a complex between a small fraction of the cellular complement of Pma1, the major plasma membrane proton pump, and Std1, a much lower-abundance protein that participates in glucose signaling. The Pma1 proteins from closely related Saccharomyces species are also associated with the appearance of [GAR[superscript +]]. This allowed us to confirm the relationship between Pma1, Std1, and [GAR[superscript +]] by establishing that these proteins can create a transmission barrier for prion propagation and induction in Saccharomyces cerevisiae. The fact that yeast cells employ a prion-based mechanism for heritably switching between distinct carbon source utilization strategies, and employ the plasma membrane proton pump to do so, expands the biological framework in which self-propagating protein-based elements of inheritance operate.United States. National Institutes of Health (grant GM25874

    Blessings in disguise: biological benefits of prion-like mechanisms

    Get PDF
    Prions and amyloids are often associated with disease, but related mechanisms provide beneficial functions in nature. Prion-like mechanisms (PriLiMs) are found from bacteria to humans, where they alter the biological and physical properties of prion-like proteins. We have proposed that prions can serve as heritable bet-hedging devices for diversifying microbial phenotypes. Other, more dynamic proteinaceous complexes may be governed by similar self-templating conformational switches. Additional PriLiMs continue to be identified and many share features of self-templating protein structure (including amyloids) and dependence on chaperone proteins. Here, we discuss several PriLiMs and their functions, intending to spur discussion and collaboration on the subject of beneficial prion-like behaviors.National Science Foundation (U.S.) (NSF Fellowship)Howard Hughes Medical Institute (Investigator

    Subunit interactions influence the biochemical and biological properties of Hsp104

    Get PDF
    Point mutations in either of the two nucleotide-binding domains (NBD) of Hsp104 (NBD1 and NBD2) eliminate its thermotolerance function in vivo. In vitro, NBD1 mutations virtually eliminate ATP hydrolysis with little effect on hexamerization; analogous NBD2 mutations reduce ATPase activity and severely impair hexamerization. We report that high protein concentrations overcome the assembly defects of NBD2 mutants and increase ATP hydrolysis severalfold, changing V(max) with little effect on K(m). In a complementary fashion, the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate inhibits hexamerization of wild-type (WT) Hsp104, lowering V(max) with little effect on K(m). ATP hydrolysis exhibits a Hill coefficient between 1.5 and 2, indicating that it is influenced by cooperative subunit interactions. To further analyze the effects of subunit interactions on Hsp104, we assessed the effects of mutant Hsp104 proteins on WT Hsp104 activities. An NBD1 mutant that hexamerizes but does not hydrolyze ATP reduces the ATPase activity of WT Hsp104 in vitro. In vivo, this mutant is not toxic but specifically inhibits the thermotolerance function of WT Hsp104. Thus, interactions between subunits influence the ATPase activity of Hsp104, play a vital role in its biological functions, and provide a mechanism for conditionally inactivating Hsp104 function in vivo

    Amyloid Deposits: Protection Against Toxic Protein Species?

    Get PDF
    Neurodegenerative diseases ranging from Alzheimer’s disease and polyglutamine diseases to transmissible spongiform encephalopathies are associated with the aggregation and accumulation of misfolded proteins. In several cases the intracellular and extracellular protein deposits contain a fibrillar protein species called amyloid. However while amyloid deposits are hallmarks of numerous neurodegenerative diseases, their actual role in disease progression remains unclear. Especially perplexing is the often poor correlation between protein deposits and other markers of neurodegeneration. As a result the question remains whether amyloid deposits are the disease causing species, the consequence of cellular disease pathology or even the result of a protective cellular response to misfolded protein species. Here we highlight studies that suggest that accumulation and sequestration of misfolded protein in amyloid inclusion bodies and plaques can serve a protective function. Furthermore, we discuss how exceeding the cellular capacity for protective deposition of misfolded proteins may contribute to the formation of toxic protein species

    Biochemical, Cell Biological, and Genetic Assays to Analyze Amyloid and Prion Aggregation in Yeast

    Get PDF
    Protein aggregates are associated with a variety of debilitating human diseases, but they can have functional roles as well. Both pathological and nonpathological protein aggregates display tremendous diversity, with substantial differences in aggregate size, morphology, and structure. Among the different aggregation types, amyloids are particularly remarkable, because of their high degree of order and their ability to form self-perpetuating conformational states. Amyloids form the structural basis for a group of proteins called prions, which have the ability to generate new phenotypes by a simple switch in protein conformation that does not involve changes in the sequence of the DNA. Although protein aggregates are notoriously difficult to study, recent technological developments and, in particular, the use of yeast prions as model systems, have been very instrumental in understanding fundamental aspects of aggregation. Here, we provide a range of biochemical, cell biological and yeast genetic methods that are currently used in our laboratory to study protein aggregation and the formation of amyloids and prions

    Scarless Gene Tagging with One-Step Transformation and Two-Step Selection in Saccharomyces cerevisiae and Schizosaccharomyces pombe

    Get PDF
    Gene tagging with fluorescent proteins is commonly applied to investigate the localization and dynamics of proteins in their cellular environment. Ideally, a fluorescent tag is genetically inserted at the endogenous locus at the N- or C- terminus of the gene of interest without disrupting regulatory sequences including the 5’ and 3’ untranslated region (UTR) and without introducing any extraneous unwanted “scar” sequences, which may create unpredictable transcriptional or translational effects. We present a reliable, low-cost, and highly efficient method for the construction of such scarless C-terminal and N-terminal fusions with fluorescent proteins in yeast. The method relies on sequential positive and negative selection and uses an integration cassette with long flanking regions, which is assembled by two-step PCR, to increase the homologous recombination frequency. The method also enables scarless tagging of essential genes with no need for a complementing plasmid. To further ease high-throughput strain construction, we have computationally automated design of the primers, applied the primer design code to all open reading frames (ORFs) of the budding yeast Saccharomyces cerevisiae (S. cerevisiae) and the fission yeast Schizosaccharomyces pombe (S. pombe), and provide here the computed sequences. To illustrate the scarless N- and C-terminal gene tagging methods in S. cerevisiae, we tagged various genes including the E3 ubiquitin ligase RSP5, the proteasome subunit PRE1, and the eleven Rab GTPases with yeast codon-optimized mNeonGreen or mCherry; several of these represent essential genes. We also implemented the scarless C-terminal gene tagging method in the distantly related organism S. pombe using kanMX6 and HSV1tk as positive and negative selection markers, respectively, as well as ura4. The scarless gene tagging methods presented here are widely applicable to visualize and investigate the functional roles of proteins in living cells.United States. National Institutes of Health (NS087557)American Parkinson Disease Association, Inc

    Harnessing Natural Diversity to Probe Metabolic Pathways

    Get PDF
    Analyses of cellular processes in the yeast Saccharomyces cerevisiae rely primarily upon a small number of highly domesticated laboratory strains, leaving the extensive natural genetic diversity of the model organism largely unexplored and unexploited. We asked if this diversity could be used to enrich our understanding of basic biological processes. As a test case, we examined a simple trait: the utilization of di/tripeptides as nitrogen sources. The capacity to import small peptides is likely to be under opposing selective pressures (nutrient utilization versus toxin vulnerability) and may therefore be sculpted by diverse pathways and strategies. Hitherto, dipeptide utilization in S. cerevisiae was solely ascribed to the activity of a single protein, the Ptr2p transporter. Using high-throughput phenotyping and several genetically diverse strains, we identified previously unknown cellular activities that contribute to this trait. We find that the Dal5p allantoate/ureidosuccinate permease is also capable of facilitating di/tripeptide transport. Moreover, even in the absence of Dal5p and Ptr2p, an additional activity—almost certainly the periplasmic asparaginase II Asp3p—facilitates the utilization of dipeptides with C-terminal asparagine residues by a different strategy. Another, as-yet-unidentified activity enables the utilization of dipeptides with C-terminal arginine residues. The relative contributions of these activities to the utilization of di/tripeptides vary among the strains analyzed, as does the vulnerability of these strains to a toxic dipeptide. Only by sampling the genetic diversity of multiple strains were we able to uncover several previously unrecognized layers of complexity in this metabolic pathway. High-throughput phenotyping facilitates the rapid exploration of the molecular basis of biological complexity, allowing for future detailed investigation of the selective pressures that drive microbial evolution

    Widespread Inhibition of Posttranscriptional Splicing Shapes the Cellular Transcriptome following Heat Shock

    Get PDF
    During heat shock and other proteotoxic stresses, cells regulate multiple steps in gene expression in order to globally repress protein synthesis and selectively upregulate stress response proteins. Splicing of several mRNAs is known to be inhibited during heat stress, often meditated by SRp38, but the extent and specificity of this effect have remained unclear. Here, we examined splicing regulation genome-wide during heat shock in mouse fibroblasts. We observed widespread retention of introns in transcripts from ~1,700 genes, which were enriched for tRNA synthetase, nuclear pore, and spliceosome functions. Transcripts with retained introns were largely nuclear and untranslated. However, a group of 580+ genes biased for oxidation reduction and protein folding functions continued to be efficiently spliced. Interestingly, these unaffected transcripts are mostly cotranscriptionally spliced under both normal and stress conditions, whereas splicing-inhibited transcripts are mostly spliced posttranscriptionally. Altogether, our data demonstrate widespread repression of splicing in the mammalian heat stress response, disproportionately affecting posttranscriptionally spliced genes.Weizmann Institute of Science (Postdoctoral Award for Advancing Women in Science)European Molecular Biology Organization (Long-term Fellowship)Machiah FoundationNational Science Foundation (U.S.) (Grant 0821391)National Institutes of Health (U.S.
    corecore