18 research outputs found
Role of extracellular matrix components and structure in new renal models in vitro
The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECMâs role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies
Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells
Several studies have suggested that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) may mediate MSC paracrine action on kidney regeneration. This activity has been, at least in part, ascribed to the transfer of proteins/transcription factors and different RNA species. Information on the RNA/protein content of different MSC EV subpopulations and the correlation with their biological activity is currently incomplete. The aim of this study was to evaluate the molecular composition and the functional properties on renal target cells of MSC EV sub-populations separated by gradient floatation. The results demonstrated heterogeneity in quantity and composition of MSC EVs. Two peaks of diameter were observed (90â110 and 170â190Â nm). The distribution of exosomal markers and miRNAs evaluated in the twelve gradient fractions showed an enrichment in fractions with a flotation density of 1.08â1.14Â g/mL. Based on this observation, we evaluated the biological activity on renal cell proliferation and apoptosis resistance of low (CF1), medium (CF2) and high (CF3) floatation density fractions. EVs derived from all fractions, were internalized by renal cells, CF1 and CF2 but not CF3 fraction stimulated significant cell proliferation. CF2 also inhibited apoptosis on renal tubular cells submitted to ischemia-reperfusion injury. Comparative miRNomic and proteomic profiles reveal a cluster of miRNAs and proteins common to all three fractions and an enrichment of selected molecules related to renal regeneration in CF2 fraction. In conclusion, the CF2 fraction enriched in exosomal markers was the most active on renal tubular cell proliferation and protection from apoptosis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12015-016-9713-1) contains supplementary material, which is available to authorized users
Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment
The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine
Visceral leishmaniasis caused by Leishmania (Leishmania) amazonensis associated with Hodgkinâs lymphoma
Visceral leishmaniasis (VL) is mainly caused by Leishmania (Leishmania) donovani and Leishmania (L.) infantum; however, other Leishmania species have been associated with VL. We report a case of a patient simultaneously diagnosed with VL caused by Leishmania (L.) amazonensis and Hodgkinâs lymphoma. After treatment with liposomal amphotericin B and chemotherapy, the patient presented a clinical cure. This case report reinforces the hypothesis that other Leishmania species can cause visceral lesions mainly related to immunosuppression
Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells
Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth
Extracellular Vesicles as a Therapeutic Tool for Kidney Disease: Current Advances and Perspectives
Extracellular vesicles (EVs) have been described as important mediators of cell communi-cation, regulating several physiological processes, including tissue recovery and regeneration. In the kidneys, EVs derived from stem cells have been shown to support tissue recovery in diverse disease models and have been considered an interesting alternative to cell therapy. For this purpose, however, several challenges remain to be overcome, such as the requirement of a high number of EVs for human therapy and the need for optimization of techniques for their isolation and characterization. Moreover, the kidneyâs complexity and the pathological process to be treated require that EVs present a heterogeneous group of molecules to be delivered. In this review, we discuss the recent advances in the use of EVs as a therapeutic tool for kidney diseases. Moreover, we give an overview of the new technologies applied to improve EVsâ efficacy, such as novel methods of EV production and isolation by means of bioreactors and microfluidics, bioengineering the EV content and the use of alternative cell sources, including kidney organoids, to support their transfer to clinical applications
Extracellular Vesicles as a Therapeutic Tool for Kidney Disease: Current Advances and Perspectives
Extracellular vesicles (EVs) have been described as important mediators of cell communi-cation, regulating several physiological processes, including tissue recovery and regeneration. In the kidneys, EVs derived from stem cells have been shown to support tissue recovery in diverse disease models and have been considered an interesting alternative to cell therapy. For this purpose, however, several challenges remain to be overcome, such as the requirement of a high number of EVs for human therapy and the need for optimization of techniques for their isolation and characterization. Moreover, the kidneyâs complexity and the pathological process to be treated require that EVs present a heterogeneous group of molecules to be delivered. In this review, we discuss the recent advances in the use of EVs as a therapeutic tool for kidney diseases. Moreover, we give an overview of the new technologies applied to improve EVsâ efficacy, such as novel methods of EV production and isolation by means of bioreactors and microfluidics, bioengineering the EV content and the use of alternative cell sources, including kidney organoids, to support their transfer to clinical applications
Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment
The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine
A new basal titanosaur (Dinosauria, Sauropoda) from the Lower Cretaceous of Brazil
Although dinosaurian ichnofaunas are common in the Northeastern Brazilian Interior Basins, osteological remains are poorly represented in these areas. One of the main challenges in vertebrate paleontology in the Lower Cretaceous of this region is to recognize body-fossils, which can unveil the anatomy, functional morphology and paleoecological aspects of the dinosaurian fauna recorded until now only by footprints and trackways. The discovery of a new dinosaur specimen in the Rio Piranhas Formation of the Triunfo Basin opens new perspectives into the comprehension of paleogeographical and temporal distribution of the titanosaur sauropods. Titanosaurs are common in Upper Cretaceous rocks of Brazil and Argentina. The age of the Rio Piranhas Formation is considered to range from Berriasian to early Hauterivian. Thus, the description of this new species opens new viewpoints concerning the paleobiogeographical aspects of these sauropod dinosaurs.Fil: Carvalho, Ismar de Souza. Universidade Federal do Rio de Janeiro; BrasilFil: Salgado, Leonardo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Patagonia Norte. Instituto de InvestigaciĂłn en PaleobiologĂa y GeologĂa; ArgentinaFil: Lindoso, Rafael Matos. Instituto Federal de Educação, CiĂȘncia e Tecnologia do MaranhĂŁo; BrasilFil: AraĂșjo JĂșnior, HermĂnio Ismael de. Universidade do Estado de Rio do Janeiro; BrasilFil: Nogueira, Francisco CĂ©zar Costa. Universidade Federal de Campina Grande; BrasilFil: Soares, JosĂ© Agnelo. Universidade Federal de Campina Grande; Brasi