11,545 research outputs found

    Escape rate of an active Brownian particle over a potential barrier

    Full text link
    We study the dynamics of an active Brownian particle with a nonlinear friction function located in a spatial cubic potential. For strong but finite damping, the escape rate of the particle over the spatial potential barrier shows a nonmonotonic dependence on the noise intensity. We relate this behavior to the fact that the active particle escapes from a limit cycle rather than from a fixed point and that a certain amount of noise can stabilize the sojourn of the particle on this limit cycle

    Floquet metal to insulator phase transitions in semiconductor nanowires

    Full text link
    We study steady-states of semiconductor nanowires subjected to strong resonant time-periodic drives. The steady-states arise from the balance between electron-phonon scattering, electron-hole recombination via photo-emission, and Auger scattering processes. We show that tuning the strength of the driving field drives a transition between an electron-hole metal (EHM) phase and a Floquet insulator (FI) phase. We study the critical point controlling this transition. The EHM-to-FI transition can be observed by monitoring the presence of peaks in the density-density response function which are associated with the Fermi momentum of the EHM phase, and are absent in the FI phase. Our results may help guide future studies towards inducing novel non-equilibrium phases of matter by periodic driving.Comment: 10 pages including appendice

    Stability of three neutrino flavor conversion in supernovae

    Full text link
    Neutrino-neutrino interactions can lead to collective flavor conversion in the dense parts of a core collapse supernova. Growing instabilities that lead to collective conversions have been studied intensely in the limit of two-neutrino species and occur for inverted mass ordering in the case of a perfectly spherical supernova. We examine two simple models of colliding and intersecting neutrino beams and show, that for three neutrino species instabilities exist also for normal mass ordering even in the case of a fully symmetric system. Whereas the instability for inverted mass ordering is associated with Δm312\Delta m_{31}^2, the new instability we find for normal mass ordering is associated with Δm212\Delta m_{21}^2. As a consequence, the growth rate of these new instabilities for normal ordering is smaller by about an order of magnitude compared to the rates of the well studied case of inverted ordering.Comment: 18 pages, 5 figures Minor update on the consistency of the formulae and prefactors, actualized plot

    Mechanism of temperature dependence of the magnetic anisotropy energy in ultrathin Cobalt and Nickel films

    Full text link
    Temperature dependent FMR-measurements of Ni and Co films are analysed using a microscopic theory for ultrathin metallic systems. The mechanism governing the temperature dependence of the magnetic anisotropy energy is identified and discussed. It is reduced with increasing temperature. This behavior is found to be solely caused by magnon excitations.Comment: 3 pages, 4 figures III Joint European Magnetic Symposia, San Sebastian, Spai

    Error distributions on large entangled states with non-Markovian dynamics

    Get PDF
    We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten of errors occurs has a bound of Markovian form, and thus accuracy threshold theorems based on Markovian models should be just as effective. This is the case, for example, for a charged quantum dot emitter in a moderate to strong magnetic field. Beyond the pure-dephasing assumption, though complicated error structures can arise, they can still be qualitatively bounded by a Markovian error model.Comment: Close to published versio

    Steady states and edge state transport in topological Floquet-Bloch systems

    Get PDF
    We study the open system dynamics and steady states of two dimensional Floquet topological insulators: systems in which a topological Floquet-Bloch spectrum is induced by an external periodic drive. We solve for the bulk and edge state carrier distributions, taking into account energy and momentum relaxation through radiative recombination and electron-phonon interactions, as well as coupling to an external lead. We show that the resulting steady state resembles a topological insulator in the Floquet basis. The particle distribution in the Floquet edge modes exhibits a sharp feature akin to the Fermi level in equilibrium systems, while the bulk hosts a small density of excitations. We discuss two-terminal transport and describe the regimes where edge-state transport can be observed. Our results show that signatures of the non-trivial topology persist in the non-equilibrium steady state.Comment: 9 pages, 4 figures + supplementary materia
    • …
    corecore