130 research outputs found

    Versuch der monetären Bewertung ökologischer Leistungen des Biologischen Landbaus im Bereich Grund- und Trinkwasser am Beispiel des Einzugsgebietes der Fernwasserversorgung Mühlviertel/OÖ

    Get PDF
    Die tatsächlichen oder potentiellen volkswirtschaftlichen (externen) Kosten durch Umweltbelastung der intensiven Landbewirtschaftung werden der Allgemeinheit aufgebürdet, anstatt als Preis- bzw. Kostenfaktor in das betriebliche Rechnungswesen einzugehen. U.a. in Hinblick auf eine Verringerung externer Kosten der Landwirtschaft infolge Grund- und Trinkwasserbelastung wird der Ökologische Landbau als wirksame Alternative diskutiert. Eine Vielzahl wissenschaftlicher Untersuchungen belegt denn auch das hohe Maß an Grundwasserverträglichkeit des Biologischen Landbaus: So wiesen u. a. VEREIJKEN und WIJNANDS (1990),BRANDHUBER und HEGE (1992), MATTHEY (1992), SCHULTE (1996), BERG et al. (1997) sowie SCHLÜTER et al. (1997) deutlich niedrigere Nitratgehalte des Sickerwassers unter biologisch bewirtschafteten Flächen als unter konventionell oder integriert bewirtschafteten Vergleichsflächen nach. Aufgrund der Verringerung der Nitrat- und Vermeidung der Pestizidbelastung von Grund- und Trinkwasser durch Biologischen Landbau ist daher zu prüfen, in welchem Ausmaß durch diese Bewirtschaftungsform externe Kosten eingespart werden können

    Unheated soil-grown winter vegetables in Austria: Greenhouse gas emissions and socio-economic factors of diffusion potential

    Get PDF
    The adaption of historic European cultivation techniques for unheated winter vegetable production has gained momentum during the last years in Austria. Studies that evaluate ecological and socio-economic sustainability-factors of these production techniques are scarce. In this study, we analyze the greenhouse gas emissions along vegetable supply chains based on a life cycle approach and investigate factors of the socio-economic system towards future market diffusion of these new-old technologies based on the Sustainability Assessment of Food and Agriculture Systems (SAFA) guidelines of the Food and Agriculture Organization (FAO). Data of the supply-chains of lettuce, spinach, scallions and red radish was collected from field trials in different climatic regions in Austria and compared to existing commercial systems in Austria and Italy. The results show, that unheated winter vegetable production is feasible. Greenhouse gas emissions of unheated vegetables are lower with 0.06e0.12 kg CO2 equivalent versus 0.61e0.64 kg CO2 equivalent per kg fresh product crops from heated systems. Due to small packaging units unheated vegetables show maxima of 0.58 kg CO2 equivalent per kg product. Heated products were outreached by two times when individual shopping trips to the farm were taken into account. Keeping salad frost-free was not found to contribute to a reduction of greenhouse gas emissions compared to conventional systems. The analysis reveals that a diffusion of unheated winter harvest systems depend primarily on 11 interdepending socio-economic factors. An innovative subsidy system and the creation of a positive image of winter harvest from unheated vegetables production together with an increased utilization rate of polytunnel areas and the consultancy for producers and processors are the most influential factors towards a sustainable market diffusion of winter harvest produce

    Evaluating Research beyond Scientific Impact - How to Include Criteria for Productive Interactions and Impact on Practice and Society

    Get PDF
    Currently, established research evaluation focuses on scientific impact – that is, the impact of research on science itself. We discuss extending research evaluation to cover productive interactions and the impact of research on practice and society. The results are based on interviews with scientists from (organic) agriculture and a review of the literature on broader/social/societal impact assessment and the evaluation of interdisciplinary and ransdisciplinary research. There is broad agreement about what activities and impacts of research are relevant for such an evaluation. However, the extension of research evaluation is hampered by a lack of easily usable data. To reduce the effort involved in data collection,the usability of existing documentation procedures (e. g., proposals and reports for research funding) needs to be increased.We propose a structured database for the evaluation of scientists, projects, programmes and institutions, one that will require little additional effort beyond existing reporting requirements

    Sustainability assessment of organic dairy farms in mountainous areas of Austria

    Get PDF
    Dairy farming plays a major role in mountainous regions of Austria, mostly due to high proportion of grasslands. In general, Austria’s dairy farming faces challenges regarding sustainability, e.g. environmental impacts, but specifically for alpine areas low productivity and dependency on direct payments are lowering sustainability. Organic farming is considered as a strategy to overcome these challenges. Considering this general background, we analysed the sustainability performance and its main drivers of organic dairy farms in mountainous regions of Austria

    Absolute Quantification of sp3^3 Defects in Semiconducting Single-Wall Carbon Nanotubes by Raman Spectroscopy

    Get PDF
    The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3^3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3^3 defects have been developed, a convenient metric to precisely quantify the number of defects on a SWCNT lattice is not available. Here, we present a direct and simple quantification protocol based on a linear correlation of the integrated Raman D/G+ signal ratios and defect densities as extracted from PLQY measurements. Corroborated by a statistical analysis of single-nanotube emission spectra at cryogenic temperature, this method enables the quantitative evaluation of sp3^3 defect densities in (6,5) SWCNTs with an error of ±3 defects per micrometer and the determination of oscillator strengths for different defect types. The developed protocol requires only standard Raman spectroscopy and is independent of the defect configuration, dispersion solvent, and nanotube length

    Absolute Quantification of sp3^3 Defects in Semiconducting Single-Wall Carbon Nanotubes by Raman Spectroscopy

    Get PDF
    The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3^3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3^3 defects have been developed, a convenient metric to precisely quantify the number of defects on a SWCNT lattice is not available. Here, we present a direct and simple quantification protocol based on a linear correlation of the integrated Raman D/G+ signal ratios and defect densities as extracted from PLQY measurements. Corroborated by a statistical analysis of single-nanotube emission spectra at cryogenic temperature, this method enables the quantitative evaluation of sp3^3 defect densities in (6,5) SWCNTs with an error of ±3 defects per micrometer and the determination of oscillator strengths for different defect types. The developed protocol requires only standard Raman spectroscopy and is independent of the defect configuration, dispersion solvent, and nanotube length

    Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp3^{3} Functionalization in Organic Solvents

    Full text link
    The functionalization of semiconducting single-walled carbon nanotubes (SWNTs) with sp3^{3} defects that act as luminescent exciton traps is a powerful means to enhance their photoluminescence quantum yield (PLQY) and to add optical properties. However, the synthetic methods employed to introduce these defects are so far limited to aqueous dispersions of surfactant-coated SWNTs, often with short tube lengths, residual metallic nanotubes and poor film formation properties. In contrast to that, dispersions of polymer-wrapped SWNTs in organic solvents feature unrivaled purity, higher PLQY and are easily processed into thin films for device applications. Here, we introduce a simple and scalable phase-transfer method to solubilize diazonium salts in organic nonhalogenated solvents for the controlled reaction with polymer-wrapped SWNTs to create luminescent aryl defects. Absolute PLQY measurements are applied to reliably quantify the defect-induced brightening. The optimization of defect density and trap depth results in PLQYs of up to 4 % with 90 % of photons emitted through the defect channel. We further reveal the strong impact of initial SWNT quality and length on the relative brightening by sp3^{3} defects. The efficient and simple production of large quantities of defect-tailored polymer-sorted SWNTs enables aerosol-jet printing and spin-coating of thin films with bright and nearly reabsorption-free defect emission, which are desired for carbon nanotube-based near-infrared light-emitting devices

    Distributing entanglement and single photons through an intra-city, free-space quantum channel

    Full text link
    We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection events by calculating the cross-correlation of locally-recorded time stamps shared over a public internet channel. For this experiment, our quantum channel was maintained for a total of 40 minutes during which time a coincidence lock found approximately 60000 coincident detection events. The polarization correlations in those events yielded a Bell parameter, S=2.27/pm0.019, which violates the CHSH-Bell inequality by 14 standard deviations. This result is promising for entanglement-based free-space quantum communication in high-density urban areas. It is also encouraging for optical quantum communication between ground stations and satellites since the length of our free-space link exceeds the atmospheric equivalent.Comment: 8 pages including 1 figure and 2 tables. The first two authors contributed equally to this wor

    Marine Actinomycetes: A New Source of Compounds against the Human Malaria Parasite

    Get PDF
    Background Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite.[br/] Methods We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage.[br/] Conclusion These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to phase I trials for the treatment of refractory multiple myeloma will need to be further explored to evaluate the safety profile for its use against malaria
    corecore